Hilbert transform and spectral kurtosis based approach in identifying the health state of retrofitted old steel truss bridge

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anshul Sharma ◽  
Pardeep Kumar ◽  
Hemant Kumar Vinayak ◽  
Suresh Kumar Walia ◽  
Raj Kumar Patel

Purpose This study aims to include the diagnosis of an old concrete deck steel truss rural road bridge in the damaged and retrofitted state through vibration response signals. Design/methodology/approach The analysis of the vibration response signals is performed in time and time-frequency domains using statistical features-root mean square, impulse factor, crest factor, kurtosis, peak2peak and Stockwell transform. The proposed methodology uses the Hilbert transform in combination with spectral kurtosis and bandpass filtering technique for obtaining robust outcomes of modal frequencies. Findings The absence or low amplitude of considered mode shape frequencies is observed both before and after retrofitting of bridge indicates the deficient nodes. The kurtosis feature among all statistical approaches is able to reflect significant variation in the amplitude of different nodes of the bridge. The Stockwell transform showed better resolution of present modal frequencies but due to the yield of additional frequency peaks in the vicinity of the first three analytical modal frequencies no decisive conclusions are achieved. The methodology shows promising outcomes in eliminating noise and visualizing distinct modal frequencies of a steel truss bridge. Social implications The findings of the present study help in analyzing noisy vibration signals obtained from various structures (civil or mechanical) and determine vulnerable locations of the structure using mode shape frequencies. Originality/value The literature review gave an insight into few experimental investigations related to the combined application of Hilbert transform with spectral kurtosis and bandpass filtering technique in determining mode frequencies of a steel truss bridge.

2017 ◽  
Vol 2642 (1) ◽  
pp. 139-146
Author(s):  
Matthew Yarnold ◽  
Stephen Salaman ◽  
Eric James

Author(s):  
Matteo Vagnoli ◽  
Rasa Remenyte-Prescott ◽  
John Andrews

Bridges are one of the most important assets of transportation networks. A closure of a bridge can increase the vulnerability of the geographic area served by such networks, as it reduces the number of available routes. Condition monitoring and deterioration detection methods can be used to monitor the health state of a bridge and enable detection of early signs of deterioration. In this paper, a novel Bayesian Belief Network (BBN) methodology for bridge deterioration detection is proposed. A method to build a BBN structure and to define the Conditional Probability Tables (CPTs) is presented first. Then evidence of the bridge behaviour (such as bridge displacement or acceleration due to traffic) is used as an input to the BBN model, the probability of the health state of whole bridge and its elements is updated and the levels of deterioration are detected. The methodology is illustrated using a Finite Element Model (FEM) of a steel truss bridge, and for an in-field post-tensioned concrete bridge.


Sign in / Sign up

Export Citation Format

Share Document