Finite element analysis of induction motors based on computing detailed equivalent circuit parameters

1998 ◽  
Vol 34 (5) ◽  
pp. 3499-3502 ◽  
Author(s):  
Ping Zhou ◽  
J. Gilmore ◽  
Z. Badics ◽  
Z.J. Cendes
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1262
Author(s):  
Alessandro Mingotti ◽  
Federica Costa ◽  
Lorenzo Peretto ◽  
Roberto Tinarelli ◽  
Paolo Mazza

Stray capacitances (SCs) are a serious issue in high-voltage (HV) applications. Their presence can alter the circuit or the operation of a device, resulting in wrong or even disastrous consequences. To this purpose, in this work, we describe the modeling of SCs in HV capacitive dividers. Such modeling does not rely on finite element analysis or complicated geometries; instead, it starts from an equivalent circuit of a conventional measurement setup described by the standard IEC 61869-11. Once the equivalent model including the SCs is found, closed expressions of the SCs are derived starting from the ratio error definition. Afterwards, they are validated in a simulation environment by implementing various circuit configurations. The results demonstrate the expressions applicability and effectiveness; hence, thanks to their simplicity, they can be implemented by system operators, researchers, and manufacturers avoiding the use of complicated methods and technologies.


2013 ◽  
Vol 446-447 ◽  
pp. 503-508
Author(s):  
Xiao Feng Ding ◽  
Hui Chang

This paper presents an investigation into the losses and thermal characteristics of induction motors operated from pulse width-modulated (PWM) voltage supply in comparison to that operated from sinusoidal voltage supply. It was concluded that due to the abundant harmonics in the PWM waveforms, significant losses are induced in the motor by the inverter supply. The temperature ascends correspondingly. Experiments were conducted with no load and with load conditions. The losses and thermal characteristics were calculated using finite element analysis (FEA) and validated by the experiments.


Sign in / Sign up

Export Citation Format

Share Document