equivalent model
Recently Published Documents


TOTAL DOCUMENTS

1075
(FIVE YEARS 375)

H-INDEX

32
(FIVE YEARS 8)

Author(s):  
Wisal Adnan Al-Musawi ◽  
Wasan A. Wali ◽  
Mohammed Abd Ali Al-Ibadi

<p>This study aims to design a new architecture of the artificial neural networks (ANNs) using the Xilinx system generator (XSG) and its hardware co-simulation equivalent model using field programmable gate array (FPGA) to predict the behavior of Chua’s chaotic system and use it in hiding information. The work proposed consists of two main sections. In the first section, MATLAB R2016a was used to build a 3×4×3 feed forward neural network (FFNN). The training results demonstrate that FFNN training in the Bayesian regulation algorithm is sufficiently accurate to directly implement. The second section demonstrates the hardware implementation of the network with the XSG on the Xilinx artix7 xc7a100t-1csg324 chip. Finally, the message was first encrypted using a dynamic Chua system and then decrypted using ANN’s chaotic dynamics. ANN models were developed to implement hardware in the FPGA system using the IEEE 754 Single precision floating-point format. The ANN design method illustrated can be extended to other chaotic systems in general.</p>


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Guanglin Sha ◽  
Qing Duan ◽  
Wanxing Sheng ◽  
Yao Zhang ◽  
Chunyan Ma ◽  
...  

Aiming at the demand for medium- and high-voltage port access capability in energy router, this study proposes a quad-port DC/DC converter topology scheme based on modular multilevel converter (QP-M2DC). Compared with the traditional multiterminal energy routing converter, it has the advantages of high modularity, strong flexibility, and high power density. In addition, for the modular structure on the medium- and high-voltage sides, this study proposes a narrow phase-shift cyclic modulation strategy, which reduces the system need for voltage balance control and simplifies the overall system control. This study comprehensively introduces and analyses the QP-M2DC topology, working principle, high-frequency link equivalent, and power characteristics, then establishes an equivalent model of system control, and proposes a control scheme for a multiterminal energy routing converter. Finally, a simulation model of the system is established through PLECS, and the simulation results show that in such a narrow phase-shift modulation strategy, the proposed topology can have stable operation in a variety of patterns, reduce the capacitance, and achieve better voltage balance at the same time. The experimental results show the converter efficiency of up to 97.8%. It further shows the superiority of the proposed topology structure and the correctness and effectiveness of the proposed control schemes.


Author(s):  
Dawei Zhang ◽  
Xin Liu ◽  
Yaxiu Sun ◽  
Kuang Zhang ◽  
Qun Wu ◽  
...  

Abstract In this paper, a strategy to develop a compact transition of the spoof surface plasmon polariton (SSPP) transmission line (TL) is proposed. First, an equivalent distributed circuit model is employed for the theoretical analysis and optimization design of the SSPP unit. The mapping relation between the unit performance and the geometric parameters is deduced from the transmission matrix. The calculated results are compared with the numerical ones from the three-dimensional (3D) simulations for validation. Then, a compact transition (only 0.26λg) is built with only two matching units and a tapered strip through optimizations. The optimizations are implemented with the circuit simulations based on the equivalent model, which can remarkably save time in comparison with the 3D simulations. The transition principle is also explained by quantitatively extracting the dispersion properties and impedance characteristics. Finally, a prototype of the proposed SSPP TL is fabricated and measured for demonstration. The measured operating band (0-7.7 GHz) is almost up to the cut-off frequency (about 8 GHz), which remains the inherent broadband low-pass transmission characteristics. Meanwhile, the measured in-band return loss is almost higher than 10dB, which verifies the high-efficiency propagation. This work can pave the way for building up a new SSPP-based framework of microwave circuits.


2022 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Morshed Khandaker ◽  
Hembafan Nomhwange ◽  
Helga Progri ◽  
Sadegh Nikfarjam ◽  
Melville B. Vaughan

The study’s aim was to develop a dermal equivalent scaffold that can mimic the architecture and biological performance of the human dermis. Poly ε-caprolactone (PCL) electrospun nanofiber material (ENF) was assembled with polyethylene glycol diacrylate (PEGDA), sodium alginate (SA) and type I collagen (CG1) to develop three groups of dermal equivalent scaffolds. These scaffolds were named PEGDA-PCL, SA-PCL and CG1-PCL. Scanning electron microscopy (SEM) images of cell-free scaffolds’ top and cross-sectional surface were collected and analyzed to examine internal morphology, specifically the adhesiveness of PCL fibers with the different scaffolds. Human dermal fibroblasts were cultured on each of the scaffolds. Cell viability studies including cell adhesion, cell differentiation and stress fiber production were conducted on each scaffold. Furthermore, the architectural integrity of each scaffold was verified by degradation analysis for 2 weeks by soaking each scaffold in phosphate-buffered saline (PBS) solution. Finally, we conducted rheological characteristics of each scaffold. Based on our results from the above analysis, the study concluded that CG1-PCL is best suitable for the dermal equivalent model and has potential to be used as a graft for skin repair.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012045
Author(s):  
Wenfan Li ◽  
Xuxuan Chen ◽  
Man Li

Abstract In view of the difference between the wind speed and the actual wind speed in the example, the wind farm with fifteen direct-drive permanent magnet synchronous motors draws the recorded wind speed data on the coordinates of time and wind speed by linear regression to group the change trend. Secondly, the detailed model of wind farm is built in PSCAD, and the multi-machine equivalent model of wind farm is built by the control current source replacing the permanent magnet synchronous motor and the control part. Finally, the simulation analysis shows that the equivalent model reduces the simulation time and accurately reflects the dynamic and transient properties of the wind farm.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 229
Author(s):  
Sumei Liu ◽  
Hao Zhang ◽  
Peng Zhang ◽  
Zhongqing Li ◽  
Zepeng Wang

The fault current calculation model of photovoltaic (PV) power stations is usually treated as a capacity weighted equivalent model of a single PV generation unit (PVGU). However, in the same PV power station, different PVGUs have various fault current characteristics. As a result, there are significant differences in fault current characteristics between a PVGU and a PV power station. It means that the existing capacity weighted equivalent model cannot be used for accurately describing the fault current contributions from a practical PV power station. In this paper, the fault behaviors of the PVGUs located at different access points of a PV power station are firstly analyzed. The difference in PVGUs’ fault current contributions is identified and reflected with the activation states of current limiters that are employed for PV inverters. The activation states are represented by a theoretical expression so as to distinguish the PVGUs’ fault contributions. Further, based on the proposed theoretical expression, a novel algorithm is developed for sorting all PVGUs included in a PV power station. The multi-machine calculation model is deduced in order to exactly express the fault current contribution from a PV station. Finally, some simulation tests are conducted. The tested results verify the effectiveness of the proposed calculation model. It can provide support for calculating the protection setting of power grid connected with large-scale PV stations.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 134
Author(s):  
Senbiao Xi ◽  
Yifeng Zhong ◽  
Zheng Shi ◽  
Qingshan Yi

To solve the microstructure-related complexity of a three-dimensional textile composite, a novel equivalent model was established based on the variational asymptotic method. The constitutive modeling of 3D unit cell within the plate was performed to obtain the equivalent stiffness, which can be inputted into the 2D equivalent model (2D-EPM) to perform the bending, free-vibration and buckling analysis. The correctness and effectiveness of the 2D-EPM was validated by comparing with the results from 3D FE model (3D-FEM) under various conditions. The influence of yarn width and spacing on the equivalent stiffness was also discussed. Finally, the effective performances of 3D textile composite plate and 2D plain-woven laminate with the same thickness and yarn content were compared. The results revealed that the bending, buckling and free-vibration behaviors predicted by 2D-EPM were in good agreement with 3D-FEM, and the local field distributions within the unit cell of 3D textile composite plate were well captured. Compared with the 2D plain-woven laminate, the displacement of 3D textile composite plate was relatively larger under the uniform load, which may due to the fact that the through-the-thickness constrains of the former are only dependent on the binder yarns, while the warp yarns and weft yarns of the latter are intertwined closely.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Baoxi Song ◽  
Weizhi Xu ◽  
Dongsheng Du ◽  
Shuguang Wang

The accurate prediction of nonlinear structural behaviors under different seismic intensities is an important basis for seismic resilience assessments of building structures. The moment–rotation relationship is often used to characterize the seismic performance of connections, and is widely used in high-efficiency nonlinear structural analysis. In this paper, a method of calculating the curve using a four-linear equivalent model is presented, aiming to quantify the characteristic point parameters of the moment–rotation curves of monolithic precast beam–column (MPBC) connections for engineering design purposes. The method considered the contribution of the elastic flexure of beams and columns, the relative slip of beam longitudinal bars in the core zone, and the formation of plastic hinges at beam ends to the total deflection. Due to the presence of local complex configurations in MPBC connections, the fine fiber section method was used for moment–curvature analysis of critical beam sections. The determination of the sectional analysis processes was controlled by the strain of steel bars or concrete or their coupling effect. In addition, a two-step method was proposed to construct the moment–rotation relationship of cruciform beam–column connections for solving the deformation compatibility of beams on both sides of the column caused by asymmetric reinforcement and the strength difference between new and old concrete. To reflect the current manufacturing level of MPBC connections, 58 representative specimens reported in recent years were analyzed and classified as type 1–5. All types of MPBC connections and their 18 cast-in situ counterparts were calculated using the proposed method for both verification and quantification. The verification showed that the proposed method had good applicability to both cast-in situ and precast beam–column connections. The quantification showed that the characteristic point parameters were slightly different between these two connections. Accordingly, modification coefficients were suggested for MPBC connections to facilitate design.


Sign in / Sign up

Export Citation Format

Share Document