Minimum loss predispatch model for hydroelectric power systems

1997 ◽  
Vol 12 (3) ◽  
pp. 1220-1228 ◽  
Author(s):  
S. Soares ◽  
C.T. Salmazo
2020 ◽  
Vol 209 ◽  
pp. 07014
Author(s):  
Tulkin Gayibov ◽  
Bekzod Pulatov

Optimal planning of short-term modes of power systems is a complex nonlinear programming problem with many simple, functional and integral constraints in the form of equalities and inequalities. Especially, the presence of integral constraints causes significant difficulties in solving of such problem. Since, under such constraints, the modes of power system in separate time intervals of the considered planning period become dependent on the values of the parameters in other intervals. Accordingly, it becomes impossible to obtain the optimal mode plan as the results of separate optimization for individual time intervals of the period under consideration. And the simultaneous solution of the problem for all time intervals of the planning period in the conditions of large power systems is associated with additional difficulties in ensuring the reliability of convergence of the iterative computational process. In this regard, the issues of improving the methods and algorithms for optimization of short-term modes of power systems containing thermal and large hydroelectric power plants with reservoirs, in which water consumption is regulated in the short-term planning period, remains as an important task. In this paper, we propose the effective algorithm for solving the problem under consideration, which makes it possible to quickly and reliably determine the optimal operating modes of the power system for the planned period. The results of research of effectiveness of this algorithm are presented on the example of optimal planning of daily mode of the power system, which contains two thermal and three hydraulic power plants..


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 185 ◽  
Author(s):  
Amrita Raghoebarsing ◽  
Angèle Reinders

The aim of this paper is to give an overview of the energy sector and the current status of photovoltaic (PV) systems in Suriname and to investigate which role PV systems can play in this country’s future energy transition. At this moment, 64% of the power is available from diesel/heavy fuel oil (HFO) gensets while 36% is available from renewables namely hydroelectric power systems and PV systems. Suriname has renewable energy (RE) targets for 2017 and 2022 which already have been achieved by this 36%. However, the RE target of 2027 of 47% must be achieved yet. As there is abundant irradiance available, on an average 1792 kWh/m2/year and because several PV systems have already been successfully implemented, PV can play an important role in the energy transition of Suriname. In order to achieve the 2027 target with only PV systems, an additional 110 MWp of installed PV capacity will be required. Governmental and non-governmental institutes have planned PV projects. If these will be executed in the future than annually 0.8 TWh electricity will be produced by PV systems. In order to meet the electricity demand of 2027 fully, 2.2 TWh PV electricity will be required which implies that more PV systems must be implemented in Suriname besides the already scheduled ones.


2020 ◽  
Vol 191 ◽  
pp. 02004
Author(s):  
Alexandra Khalyasmaa ◽  
Stanislav Eroshenko ◽  
Sergey Mitrofanov ◽  
Anastasia Rusina ◽  
Anna Arestova ◽  
...  

The paper presents a simulation model of a hydroelectric power plants chain. The model allows solving the problem of hydro power plants (HPPs) operation mode planning in a unified power system, taking into account the optimization of water resources. The optimal filling and decrease of storage was performed in MATLAB Simulink software. The hydraulic properties of the river flow between the stations and the corresponding time lags in the functioning of the down-river station are taken into account. The model allows continuously monitoring changes in water pressure at hydropower plants and, as a result, uses the family of flow characteristics for various water pressures. The issues of optimizing the participation of hydroelectric power stations in the regimes of large hydrothermal power systems were also raised.


1996 ◽  
Vol 32 (1) ◽  
pp. 179-186 ◽  
Author(s):  
M. Saad ◽  
P. Bigras ◽  
A. Turgeon ◽  
R. Duquette

Sign in / Sign up

Export Citation Format

Share Document