scholarly journals Shear madness: new orthonormal bases and frames using chirp functions

1993 ◽  
Vol 41 (12) ◽  
pp. 3543-3549 ◽  
Author(s):  
R.G. Baraniuk ◽  
D.L. Jones
Keyword(s):  
Author(s):  
Wei Jiang ◽  
Zhong Chen ◽  
Ning Hu ◽  
Yali Chen

AbstractIn recent years, the study of fractional differential equations has become a hot spot. It is more difficult to solve fractional differential equations with nonlocal boundary conditions. In this article, we propose a multiscale orthonormal bases collocation method for linear fractional-order nonlocal boundary value problems. In algorithm construction, the solution is expanded by the multiscale orthonormal bases of a reproducing kernel space. The nonlocal boundary conditions are transformed into operator equations, which are involved in finding the collocation coefficients as constrain conditions. In theory, the convergent order and stability analysis of the proposed method are presented rigorously. Finally, numerical examples show the stability, accuracy and effectiveness of the method.


2007 ◽  
Vol 6 (2) ◽  
pp. 223-235
Author(s):  
Piotr Wojdyłło
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano del Olmo

Using normalized Hermite functions, we construct bases in the space of square integrable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means of the Fourier transform and the discrete Fourier transform. These relations are unitary. The construction of orthonormal bases requires the use of the Gramm–Schmidt method. On both spaces, we have provided ladder operators with the same properties as the ladder operators for the one-dimensional quantum oscillator. These operators are linear combinations of some multiplication- and differentiation-like operators that, when applied to periodic functions, preserve periodicity. Finally, we have constructed riggings for both L2(C) and l2(Z), so that all the mentioned operators are continuous.


2013 ◽  
Vol 43 (3) ◽  
pp. 548-562 ◽  
Author(s):  
K. Shafer Smith ◽  
Jacques Vanneste

Abstract Recent studies indicate that altimetric observations of the ocean’s mesoscale eddy field reflect the combined influence of surface buoyancy and interior potential vorticity anomalies. The former have a surface-trapped structure, while the latter are often well represented by the barotropic and first baroclinic modes. To assess the relative importance of each contribution to the signal, it is useful to project the observed field onto a set of modes that separates their influence in a natural way. However, the surface-trapped dynamics are not well represented by standard baroclinic modes; moreover, they are dependent on horizontal scale. Here the authors derive a modal decomposition that results from the simultaneous diagonalization of the energy and a generalization of potential enstrophy that includes contributions from the surface buoyancy fields. This approach yields a family of orthonormal bases that depend on two parameters; the standard baroclinic modes are recovered in a limiting case, while other choices provide modes that represent surface and interior dynamics in an efficient way. For constant stratification, these modes consist of symmetric and antisymmetric exponential modes that capture the surface dynamics and a series of oscillating modes that represent the interior dynamics. Motivated by the ocean, where shears are concentrated near the upper surface, the authors consider the special case of a quiescent lower surface. In this case, the interior modes are independent of wavenumber, and there is a single exponential surface mode that replaces the barotropic mode. The use and effectiveness of these modes is demonstrated by projecting the energy in a set of simulations of baroclinic turbulence.


2017 ◽  
Vol 272 (5) ◽  
pp. 1980-2004 ◽  
Author(s):  
Liu He ◽  
Xing-Gang He
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document