ladder operators
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 40)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Veronique Hussin ◽  
Ian Marquette ◽  
Kevin Zelaya

Abstract We extend and generalize the construction of Sturm-Liouville problems for a family of Hamiltonians constrained to fulfill a third-order shape-invariance condition and focusing on the "-2x/3" hierarchy of solutions to the fourth Painlev\'e transcendent. Such a construction has been previously addressed in the literature for some particular cases but we realize it here in the most general case. The corresponding potential in the Hamiltonian operator is a rationally extended oscillator defined in terms of the conventional Okamoto polynomials, from which we identify three different zero-modes constructed in terms of the generalized Okamoto polynomials. The third-order ladder operators of the system reveal that the complete set of eigenfunctions is decomposed as a union of three disjoint sequences of solutions, generated from a set of three-term recurrence relations. We also identify a link between the eigenfunctions of the Hamiltonian operator and a special family of exceptional Hermite polynomial.


2021 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Jisuo Wang ◽  
Lei Wang ◽  
Xiangguo Meng ◽  
Baolong Liang

Abstract Two new photon-modulated spin coherent states (SCSs) are introduced by operating the spin ladder operators J ± on the ordinary SCS in the Holstein-Primakoff realization and the nonclassicality is exhibited via their photon number distribution, second-order correlation function, photocount distribution and negativity of Wigner distribution. Analytical results show that the photocount distribution is a Bernoulli distribution and the Wigner functions are only associated with two-variable Hermite polynomials. Compared with the ordinary SCS, the photon-modulated SCSs exhibit more stronger nonclassicality in certain regions of the photon modulated number k and spin number j, which means that the nonclassicality can be enhanced by selecting suitable parameters.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3005
Author(s):  
Roberto De Marchis ◽  
Arsen Palestini ◽  
Stefano Patrì

We consider the linear, second-order elliptic, Schrödinger-type differential operator L:=−12∇2+r22. Because of its rotational invariance, that is it does not change under SO(3) transformations, the eigenvalue problem −12∇2+r22f(x,y,z)=λf(x,y,z) can be studied more conveniently in spherical polar coordinates. It is already known that the eigenfunctions of the problem depend on three parameters. The so-called accidental degeneracy of L occurs when the eigenvalues of the problem depend on one of such parameters only. We exploited ladder operators to reformulate accidental degeneracy, so as to provide a new way to describe degeneracy in elliptic PDE problems.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Pasquale Bosso ◽  
Giuseppe Gaetano Luciano

AbstractSeveral models of quantum gravity predict the emergence of a minimal length at Planck scale. This is commonly taken into consideration by modifying the Heisenberg uncertainty principle into the generalized uncertainty principle. In this work, we study the implications of a polynomial generalized uncertainty principle on the harmonic oscillator. We revisit both the analytic and algebraic methods, deriving the exact form of the generalized Heisenberg algebra in terms of the new position and momentum operators. We show that the energy spectrum and eigenfunctions are affected in a non-trivial way. Furthermore, a new set of ladder operators is derived which factorize the Hamiltonian exactly. The above formalism is finally exploited to construct a quantum field theoretic toy model based on the generalized uncertainty principle.


2021 ◽  
Author(s):  
Filippus Stefanus Roux

Abstract Computational challenges associated with the use of Wigner functions to identify non-classical properties of states are addressed with the aid of generating functions. It allows the computation of the Wigner functions of photon-subtracted states for an arbitrary number of subtracted photons. Both the formal definition of photon-subtracted states in terms of ladder operators and the experimental implementation with heralded photon detections are analyzed. These techniques are demonstrated by considering photon subtraction from squeezed thermal states as well as squeezed Fock states. Generating functions are also used for the photon statistics of these states. These techniques reveal various aspects of the parameter dependences of these states.


Sign in / Sign up

Export Citation Format

Share Document