A new approach to 3-D ray tracing for propagation prediction in cities

1998 ◽  
Vol 46 (6) ◽  
pp. 853-863 ◽  
Author(s):  
G. Liang ◽  
H.L. Bertoni
Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Emmanuele D’Andrea ◽  
Maurizio Arena ◽  
Massimo Viscardi ◽  
Tommaso Coppola

An increasing attention has recently been paid to the effect of the underwater noise field generated by ship activities on the marine environment. Although this problem is widely discussed in international treaties and conventions, it has not yet found a consolidated technical-scientific treatment capable of quantifying the level of underwater noise emissions produced by naval systems. As part of a national research collaboration, a novel code has been developed to predict noise propagation according to the Ray Tracing approach. Such optical geometry-based technique allows for calculating the Transmission Loss (TL) trend in its respective contributions: geometrical loss (due to the distance between the source and receiver), dissipation loss (due to the characteristics of the propagation environment), and reflection loss (due to the surfaces that delimit the field). The simulation requires as input parameters the source info as spatial position, frequency, and sound pressure level (SPL) as well as the sea properties like seabed depth, the speed of sound profile, the layers thickness the water column is divided into, the sea salinity, temperature, and pH. The simulation code provides the SPL spatial distribution useful as a fast industrial tool in the future studies addressed to identify the emission limits for the protection of marine wildlife.


2007 ◽  
Vol 5 (5) ◽  
pp. 271-279 ◽  
Author(s):  
Andre Mendes Cavalcante ◽  
Marco Jose de Sousa ◽  
Joao Crisostomo Weyl Albuquerque Costa ◽  
Carlos Renato Lisboa Frances ◽  
Gervasio Protasio dos Santos Cavalcante

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE377-VE384 ◽  
Author(s):  
Kenneth P. Bube ◽  
John K. Washbourne

Many seismic imaging techniques require computing traveltimes and travel paths. Methods to compute raypaths are usually based on high-frequency approximations. In situations such as head waves, these raypaths minimize traveltime but are not paths along which most of the energy travels. We have developed a new approach to computing raypaths, using a modification of ray bending that we call wave tracing; it computes raypaths and traveltimes that are more consistent with the paths and times for the band-limited signals in real data than the paths and times obtained using high-frequency approximations. Wave tracing shortens the raypath while keeping the raypath within the Fresnel zone for a characteristic frequency of the signal.


Sign in / Sign up

Export Citation Format

Share Document