multipath propagation
Recently Published Documents


TOTAL DOCUMENTS

544
(FIVE YEARS 125)

H-INDEX

29
(FIVE YEARS 5)

Author(s):  
V. M. Somsikov ◽  
I. P. Chunchuzov ◽  
A. Jahanshir ◽  
S. N. Mukasheva

The paper provides a review of studies devoted to the peculiarities of the propagation of radio waves in the ionosphere in the area of the solar terminator, which is the only global and regular source of acoustic-gravitational waves and other disturbances of the ionosphere. It describes the results of theoretical works devoted to the study of perturbations created by the solar terminator in the area of the difference in the intensity of solar radiation in the atmosphere. The paper gives a review of experimental studies of the effects created by the solar terminator in the entire thickness of the atmosphere. These effects, in particular, include the multipath propagation of radio waves, their phase variations, and variations in amplitudes during the propagation of radio waves in the area of the solar terminator. In the interests of science and practice, a number of problems have been proposed for the further study of wave perturbations arising as a result of the movement of the temperature gradient at sunrise and sunset hours.


2021 ◽  
Author(s):  
Fei Tang ◽  
Yijie Ren ◽  
Xiaojun Wang ◽  
Weiguang Sun ◽  
Xiaoshu Chen

With the rapid development of wireless communication technology, location-based services are playing an increasingly important role in people’s lives. However, as the living environment becomes more and more complex, the existence of obstructions and various scatterers makes the accuracy of traditional positioning algorithms decrease, thus, fingerprint positioning has gradually become a research hotspot in the field of positioning. This paper researches the 5th Generation (5G) fingerprint location method based on machine learning. A massive multiple-in multiple-out (MIMO) channel is constructed on the MATLAB simulation platform, from which the fingerprint information is extracted to establish a fingerprint database. Considering the huge amount of data in the fingerprint database, and under the multipath effect, the channel characteristics are mainly affected by the scatterers near the point to be located. This paper proposes a scattering-based clustering method that combines the particularity of multipath propagation for clustering. Research shows that this method has excellent clustering effects, which can effectively improve algorithm efficiency and reduce data storage pressure on the base station side. (Foundation items: Social Development Projects of Jiangsu Science and Technology Department (No.BE2018704).)


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8296
Author(s):  
Cezary Ziółkowski ◽  
Jan M. Kelner ◽  
Jarosław Krygier ◽  
Aniruddha Chandra ◽  
Aleš Prokeš

The basic technology that will determine the expansion of the technical capabilities of fifth generation cellular systems is a massive multiple-input-multiple-output. Therefore, assessing the influence of the antenna beam orientations on the radio channel capacity is very significant. In this case, the effects of mismatching the antenna beam directions are crucial. In this paper, the methodology for evaluating changes in the received signal power level due to beam misalignment for the transmitting and receiving antenna systems is presented. The quantitative assessment of this issue is presented based on simulation studies carried out for an exemplary propagation scenario. For non-line-of-sight (NLOS) conditions, it is shown that the optimal selection of the transmitting and receiving beam directions may ensure an increase in the level of the received signal by several decibels in relation to the coaxial position of the beams. The developed methodology makes it possible to analyze changes in the radio channel capacity versus the signal-to-noise ratio and distance between the transmitter and receiver at optimal and coaxial orientations of antenna beams for various propagation scenarios, considering NLOS conditions. In the paper, the influence of the directional antenna use and their direction choices on the channel capacity versus SNR and the distance between the transmitter and receiver is shown.


2021 ◽  
Author(s):  
Donatella Darsena ◽  
Giacinto Gelli ◽  
Ivan Iudice ◽  
Francesco Verde

Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a “store-carry and forward” fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts – required to implement the proposed detection strategy – are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer.


2021 ◽  
Vol 13 (24) ◽  
pp. 5013
Author(s):  
Florian Bischeltsrieder ◽  
Markus Peichl ◽  
Wolfgang Utschick

In harmonic radar applications, images produced using algorithms of conventional radar applications experience some defocusing effects of the electronic targets’ impulse responses. This is typically explained by the dispersive transfer functions of the targets. In addition, it was experimentally observed that objects with a linear transfer behavior do not contribute to the received signal of a harmonic radar measurement. However, some signal contributions based on a multipath propagation can overlay the desired signal, which leads to an undesired and unusual interference caused by the nonlinear character of the electronic targets. Here, motivated by the analysis of measured harmonic radar data, the effects of both phenomena are investigated by theoretical derivations and simulation studies. By analyzing measurement data, we show that the dispersion effects are caused by the target and not by the measurement system or the measurement geometry. To this end, a signal model is developed, with which it is possible to describe both effects, dispersion and multipath propagation. In addition, the discrepancy between classic radar imaging and harmonic radar is analyzed.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3016
Author(s):  
Juraj Machaj ◽  
Peter Brida ◽  
Slavomir Matuska

In the last decade, positioning using wireless signals has gained a lot of attention since it could open new opportunities for service providers. Localization is important, especially in indoor environments, where the widely used global navigation satellite systems (GNSS) signals suffer from high signal attenuation and multipath propagation, resulting in poor accuracy or a loss of positioning service. Moreover, in an Internet of things (IoT) environment, the implementation of GNSS receivers into devices may result in higher demands on battery capacity, as well as increased cost of the hardware itself. Therefore, alternative localization systems that are based on wireless signals for the communication of IoT devices are gaining a lot of attention. In this paper, we provide a design of an IoT localization system, which consists of multiple localization modules that can be utilized for the positioning of IoT devices that are connected thru various wireless technologies. The proposed system can currently perform localization based on received signals from LoRaWAN, ZigBee, Wi-Fi, UWB and cellular technologies. The implemented pedestrian dead reckoning algorithm can process the data measured by a mobile device that is equipped with inertial sensors to construct a radio map and thus help with the deployment of the positioning services based on a fingerprinting approach.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052097
Author(s):  
F Vybornov

Abstract This article presents the results of experimental studies of parameters of natural traveling ionospheric disturbances of “sickle” type observed at mid-latitudes using linear frequency modulation ionosondes. Technical parameters of the ionosondes used are given. Experiments were carried out on slightly inclined paths in the central part of Russia in 2015 - 2020 in the daytime. The transmitting station was located in the village of Vasilsursk, Nizhny Novgorod Region. Registration was carried out in the city of Nizhny Novgorod. Examples of ionograms obtained in the course of measurements with different structure of perturbations are given. Estimates of development times of disturbances and their frequency range have been made. The structure of the received signal is analyzed. Based on the results of a complex experiment using a network of synchronously operating ionosondes of the same type, the data obtained were analyzed and direction and magnitude of propagation velocity of the phase front of moving disturbance were determined. A possible mechanism for the imitation of one-way vertical motion of a traveling disturbance characteristic of the mid-latitude ionosphere is discussed within the framework of multipath propagation of radio waves.


2021 ◽  
Author(s):  
Yang Yang ◽  
Zengshan Tian ◽  
Ze Li ◽  
Linxia Li

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7825
Author(s):  
Jerzy Mizeraczyk ◽  
Ryszard Studanski ◽  
Andrzej Zak ◽  
Agnieszka Czapiewska

Wireless data transmission in the hydroacoustic channel under non-line-of-sight (NLOS) propagation conditions, for example, during a wreck penetration, is difficult to implement reliably. This is mostly due to the multipath propagation, which causes a reduction in the quality of data reception. Therefore, in this work an attempt has been made to develop a reliable method of wireless underwater communication test it under the NLOS conditions. In our method, we used multiple frequency-shift keying (MFSK) modulation, sending a single bit on two carriers, and diversity combining. The method was tested in laboratory conditions which simulated underwater signal propagation during the penetration of the wreck. The propagation conditions were investigated by determining the impulse responses at selected measurement points using the correlation method. Additionally, for comparison, the data transmission quality was determined by the bit error rate (BER) under the same conditions using direct sequence spread spectrum (DSSS) and binary phase shift keying (BPSK) modulation. The obtained results confirmed the usefulness of the application of the developed method for wireless data transmission in a hydroacoustic channel under NLOS conditions.


Sign in / Sign up

Export Citation Format

Share Document