Plane wave, pattern subtraction, range compensation

2001 ◽  
Vol 49 (12) ◽  
pp. 1843-1851 ◽  
Author(s):  
D.A. Leatherwood ◽  
E.B. Joy
Keyword(s):  
1939 ◽  
Vol 17a (1) ◽  
pp. 1-13
Author(s):  
R. Ruedy

A study of the complete equation expressing the action of a driving force, periodic in time but constant throughout the length of the string and opposed by a damping force proportional to the velocity, leads to formulae suitable for the practical calculation of the shape of standing waves that are produced by a plane wave of sound or by a steady wind. At resonance the amplitude at the midpoint of a uniform string set into a plane wave of sound is proportional to the diameter, to the square root of the intensity of the wave (G erg per sq. cm. per sec.), and inversely proportional to the order of the overtone and to the square root of the frequency. Damping causes the lag between force and motion to differ from point to point, particularly near the nodes, so that even at resonance the wave pattern is not rigorously stationary. On the average, the lag increases from the value zero, obtained when the ratio v/v0 between applied frequency and fundamental frequency is zero, to ±π/2 when v/v0 = 1, increases again from −π/2 through 0 at v/v0 = 2, to π/2 at v/v0 = 3, and so on.


Author(s):  
J. M. Pankratz

It is often desirable in transmission electron microscopy to know the vertical spacing of points of interest within a specimen. However, in order to measure a stereo effect, one must have two pictures of the same area taken from different angles, and one must have also a formula for converting measured differences between corresponding points (parallax) into a height differential.Assume (a) that the impinging beam of electrons can be considered as a plane wave and (b) that the magnification is the same at the top and bottom of the specimen. The first assumption is good when the illuminating system is overfocused. The second assumption (the so-called “perspective error”) is good when the focal length is large (3 x 107Å) in relation to foil thickness (∼103 Å).


1997 ◽  
Vol 92 (3) ◽  
pp. 477-487 ◽  
Author(s):  
GERALD LIPPERT ◽  
JuRG HUTTER ◽  
MICHELE PARRINELLO

1981 ◽  
Vol 46 (02) ◽  
pp. 547-549 ◽  
Author(s):  
E M Essien ◽  
M I Ebhota

SummaryDuring acute malaria infection, platelets in human platelet-rich plasma are hypersensitive to the addition of ADP between 1.0 uM and 5.0 uM, or adrenaline 0.11 uM as aggregating agents. The mean maximum aggregation amplitude (as % of light transmission) obtained from 8 subjects in response to added ADP (1.0 uM), 39.8 ± 27 (1SD), was significantly greater than the value in 6 controls (5.2±6.7 (1SD); t = 3, 51 P <0.005). A similar pattern of response was obtained with higher ADP concentrations (2.4,4.5 or 5.0 uM) in 22 patients and 20 control subjects (89.9±14.9% vs 77.8±16.5% (1SD) t = 2.45, P <0.02). Addition of 4.5 uM ADP to patient PRP usually evoked only a single aggregation wave (fused primary and secondary waves) while the typical primary and secondary wave pattern was usually obtained from controls.Mean plasma B-thromboglobulin (BTG) concentration in 7 patients (208.3 ± 15.6 ng/ml) was significantly higher than the value in 6 control subjects (59.2±15.7 ng/ml; t = 13.44, P <0.002).


2002 ◽  
Vol 727 ◽  
Author(s):  
A. M. Mazzone

AbstractFull Potential Linearized Augmented Plane Wave calculations have been performed for epitaxial multilayers formed by the noble metals Ag and Cu with a thickness n up to 10 layers. The multilayers have a fcc lattice and are pure or compositionally modulated with a structure of the type Agn Cun or (AgCu)n. For n in the range 2,3 the density of states, evaluated at paramagnetic level, exhibits a sharp reduction of the bandwidth which is consistent with the reduced coordination of these structures. For n ≤ 5 the density of states in the central layers converges to the bulk value while the outer layers retain the narrow bandwidth found at n=2. Due to the absence of charge intermixing and hybridization, these features are shared by multilayers of all composition.


2020 ◽  
Author(s):  
Daniel Koch ◽  
Sergei Manzhos

<p></p><p>The generalized gradient approximation (GGA) often fails to correctly describe the electronic structure and thermochemistry of transition metal oxides and is commonly improved using an inexpensive correction term with a scaling parameter <i>U</i>. We tune <i>U</i> to reproduce experimental vanadium oxide redox energetics with a localized basis and a GGA functional. We find the value for <i>U</i> to be significantly lower than what is generally reported with plane-wave bases, with the uncorrected GGA results being in reasonable agreement with experiments. We use this computational setup to calculate interstitial and substitutional <a>insertion energies of main group metals in vanadium pentoxide</a> and find <a>interstitial doping to be thermodynamically favored</a>.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document