Theory and Errors in Stereo Electron Microscopy

Author(s):  
J. M. Pankratz

It is often desirable in transmission electron microscopy to know the vertical spacing of points of interest within a specimen. However, in order to measure a stereo effect, one must have two pictures of the same area taken from different angles, and one must have also a formula for converting measured differences between corresponding points (parallax) into a height differential.Assume (a) that the impinging beam of electrons can be considered as a plane wave and (b) that the magnification is the same at the top and bottom of the specimen. The first assumption is good when the illuminating system is overfocused. The second assumption (the so-called “perspective error”) is good when the focal length is large (3 x 107Å) in relation to foil thickness (∼103 Å).

2000 ◽  
Vol 33 (1) ◽  
pp. 10-25 ◽  
Author(s):  
Stefan Zaefferer

A new computer program for on-line crystallographic analysis in transmission electron microscopy (TEM) is presented. The program is based on the fast on-line determination of single-crystal orientations from Kikuchi and spot patterns. Spot patterns, which are particularly useful in the case of highly deformed metals, are analyzed by a new digital image processing procedure. This procedure improves the precision and ease of the orientation measurement. The program permits the on-line measurement of glide systems characterized by the Burgers vector and the crystallographic line direction of dislocations and their glide planes. The determination of twin systems, based on the misorientation calculation for any crystal structure, is included as well. The possibility of determining the foil thickness permits the complete crystallographic characterization of interfaces. Finally, the program facilitates the discrimination of phases and includes the fit of the lattice parametersa,bandcfrom diffraction patterns. The new procedures are described in detail. Application examples are given for all functions.


1994 ◽  
Vol 29 (7) ◽  
pp. 1920-1924 ◽  
Author(s):  
Zhenpeng Pan ◽  
C. K. L. Davies ◽  
R. N. Stevens

Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Sign in / Sign up

Export Citation Format

Share Document