turbulent medium
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 30)

H-INDEX

29
(FIVE YEARS 2)

Author(s):  
Li Xiao ◽  
Ming Zhu ◽  
Xiaohui Sun ◽  
Peng Jiang ◽  
Chun Sun

Abstract The relativistic electrons rotate in the enhanced magnetic field of the supernova remnants and emit the synchrotron radio emission.We aim to use the Five-hundred-meter Aperture Spherical radio Telescope (FAST) to obtain a sensitive continuum map of the SNR VRO 42.05.01 (G166.0+4.3) at 1240 MHz. The 500 MHz bandwidth is divided into low and high-frequency bands centered at 1085 and 1383 MHz to investigate the spectral index variations within the remnant, together with the Effelsberg 2695 MHz data. We obtained an integrated flux density of 6.2±0.4 Jy at 1240 MHz for VRO 42.05.01, consistent with previous results. The spectral index found from TT-plot between 1240 and 2695 MHz agrees with previous values from 408 MHz up to 5 GHz. The three-band spectral index distribution shows a clear flatter value of α ∼ −0.33 in the shell region and steeper index of α = −0.36 − −0.54 in the wing region. The flatter spectral index in the shell region could be attributed to a second-order Fermi process in the turbulent medium in the vicinity of the shock and/or a higher compression ratio of shock and a high post-shock density than that in elsewhere.



2021 ◽  
Vol 88 (6) ◽  
pp. 872-880
Author(s):  
N. N. Rogovtsov ◽  
V. Ya. Anissimov

New analytical representations for the truncated spectral characteristics of the four-point coherence function of a laser beam propagating in a turbulent medium are obtained. These representations are valid for any level of fluctuations of the refractive index in air. For two particular cases they turn into exact analytical representations previously derived by the authors with using of an integro-functional equation for truncated spectral characteristic of the four-point coherence function. A constructive procedure for obtaining approximate analytical expressions of the four-point coherence function of a laser beam propagating in a turbulent medium is proposed.



2021 ◽  
Author(s):  
Mohamed Lazrek ◽  
Zoubir Hricha ◽  
Abdelmajid Belafhal

Abstract Based on the extended Huygens–Fresnel diffraction integral, the analytical expression of the average intensity for a vortex cosine hyperbolic-Gaussian beam (vChGB) propagating in oceanic turbulence is derived in detail. From the derived formula, the propagation properties of a vChGB in oceanic turbulence, including the average intensity distribution and the beam spreading are discussed with numerical examples. It is shown that oceanic turbulence influences strongly the propagation properties of the beam in the turbulent medium. The vChGB may propagate within shorter distance in weak oceanic turbulence by increasing the dissipation rate of mean-square temperature and the ratio of temperature to salinity fluctuation or by increasing the dissipation rate of turbulent kinetic energy per unit mass of sea water. Meanwhile, the evolution properties of the vChGB in the oceanic turbulence are affected by the initial beam parameters, namely the decentered parameter b, the topological charge M, the beam waist width ω0 and the wavelength λ. The obtained results can be beneficial for applications in optical underwater communication and remote sensing domain, imaging, and so on.



Author(s):  
Е.Р. МИЛЮТИН

Анализируются геометрические потери в атмосферных оптических системах в свободном пространстве. Приводятся оценки потерь в турбулентной среде. Geometrical losses in atmospheric optical systems in free space are analyzed. Estimates of losses in a turbulent medium are given.



2021 ◽  
Author(s):  
Rocio Manobanda ◽  
Christian Vasconez ◽  
Denise Perrone ◽  
Raffaele Marino ◽  
Dimitri Laveder ◽  
...  

<p>Structured, highly variable and virtually collision-free. Space plasma is an unique laboratory for studying the transfer of energy in a highly turbulent environment. This turbulent medium plays an important role in various aspects of the Solar--Wind generation, particles acceleration and heating, and even in the propagation of cosmic rays. Moreover, the Solar Wind continuous expansion develops a strong turbulent character, which evolves towards a state that resembles the well-known hydrodynamic turbulence (Bruno and Carbone). This turbulence is then dissipated from magnetohydrodynamic (MHD) through kinetic scales by different -not yet well understood- mechanisms. In the MHD approach, Kolmogorov-like behaviour is supported by power-law spectra and intermittency measured in observations of magnetic and velocity fluctuations. In this regime, the intermittent cross-scale energy transfer has been extensively described by the Politano--Pouquet (global) law, which is based on conservation laws of the MHD invariants, and was recently expanded to take into account the physics at the bottom of the inertial (or Hall) range, e.g. (Ferrand et al., 2019). Following the 'Turbulence Dissipation Challenge', we study the properties of the turbulent energy transfer using three different bi-dimensional numerical models of space plasma. The models, Hall-MHD (HMHD), Landau Fluid (LF) and Hybrid Vlasov-Maxwell (HVM), were ran in collisionless-plasma conditions, with an out-of-plane ambient magnetic field, and with magnetic diffusivity carefully calibrated in the fluid models. As each model has its own range of validity, it allows us to explore a long-enough range of scales at a period of maximal turbulence activity. Here, we estimate the local and global scaling properties of different energy channels using a, recently introduced, proxy of the local turbulent energy transfer (LET) rate (Sorriso-Valvo et al., 2018). This study provides information on the structure of the energy fluxes that transfers (and dissipates) most of the energy at small scales throughout the turbulent cascade. </p>



2021 ◽  
Author(s):  
Eduard Kontar ◽  
Hamish Reid

<div>The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts, the brightest astrophysical radio sources detected by humans. The formation and motion of type III fine frequency structures is a puzzle but is commonly believed to be related to plasma turbulence in the solar corona and solar wind. Combining a theoretical framework with kinetic simulations and high-resolution radio type III observations, we quantitatively show that the fine structures are caused by the moving intense clumps of Langmuir waves in a turbulent medium. Our results show how type III fine structure can be used to remotely analyse the intensity and spectrum of compressive density fluctuations, and can infer ambient temperatures in astrophysical plasma, both significantly expanding the current diagnostic potential of solar radio emission.</div><div> </div>



2021 ◽  
Vol 909 (2) ◽  
pp. 173
Author(s):  
Biwen Bao ◽  
Qiyong Peng ◽  
Chuyuan Yang ◽  
Li Zhang


Sign in / Sign up

Export Citation Format

Share Document