Zero Current Detector with Slope Judgement Calibration in Mobile Battery Charger IC

Author(s):  
Kye-Seok Yoon ◽  
Hye-Bong Ko ◽  
Jin-Woo So ◽  
Sung-Woo Lee ◽  
Sung-Kyu Cho ◽  
...  
Keyword(s):  
2013 ◽  
Vol 768 ◽  
pp. 388-391
Author(s):  
M. Santhosh Rani ◽  
Julie Samantaray ◽  
Subhransu Sekhar Dash

This paper presents a novel application of full-bridge series parallel resonant converter (FBSPRC) for dc source and secondary battery interface. Secondary batteries has been widely used in the application of residential, industrial and commercial energy storage systems because of its low energy conversion loss, which enhances the systems overall efficiency. A series parallel loaded resonant converter (SPRC) which is a subset of DC-DC converter can be operated with either zero-voltage turn-on (above resonant frequency) or zero current turn off (below resonant frequency) to eliminate the turn on and turn-off losses of the semiconductor devices. This converter is widely used to achieve reduction in size of the passive components of the converter such as inductor, capacitor and transformers. Simulation results based on a 12V 45Ah battery charger are proposed to validate the analysis and to demonstrate the performance of the proposed approach. Satisfactory performance is obtained from the measured results. The simulation results validate the effectiveness of the chosen battery charger.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Kuo-Kuang Chen

The main purpose of this paper is to develop a novel application of a resonant switch converter for battery chargers. A zero-current-switching (ZCS) converter with a quasiresonant converter (QRC) was used as the main structure. The proposed ZCS dc–dc battery charger has a straightforward structure, low cost, easy control, and high efficiency. The operating principles and design procedure of the proposed charger are thoroughly analyzed. The optimal values of the resonant components are computed by applying the characteristic curve and electric functions derived from the circuit configuration. Experiments were conducted using lead-acid batteries. The optimal parameters of the resonance components were determined using the load characteristic curve diagrams. These values enable the battery charger to turn on and off at zero current, resulting in a reduction of switching losses. The results of the experiments show that when compared with the traditional pulse-width-modulation (PWM) converter for a battery charger, the buck converter with a zero- current-switching quasiresonant converter can lower the temperature of the activepower switch.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2113
Author(s):  
Jacopo Colussi ◽  
Alessandro La Ganga ◽  
Roberto Re ◽  
Paolo Guglielmi ◽  
Eric Armando

This paper presents the experimental validation, using the opposition method, of a high-power three-phase Wireless-Power-Transfer (WPT) system for automotive applications. The system under test consists of three coils with circular sector shape overlapped to minimize the mutual cross-coupling, a three-phase inverter at primary side and a three-phase rectifier at receiver side. In fact thanks to the delta configuration used to connect the coils of the electromagnetic structure, a three-phase Silicon Carbide (SiC) inverter is driving the transmitter side. The resonance tank capacitors are placed outside of the delta configuration reducing in this way their voltage sizing. This WPT system is used as a 100 kW–85 kHz ultrafast battery charger for light delivery vehicle directly supplied by the power grid of tramways. The adopted test-bench for the WPT charger consists of adding circulating boost converter to the system under test to perform the opposition method technique. The experimental results prove the effectiveness of the proposed structure together with the validation of fully exploited simulation analysis. This is demonstrated by transferring 100 kW with more than 94% DC-to-DC efficiency over 50 mm air gap in aligned conditions. Furthermore, testing of Zero-Current and Zero-Voltage commutations are performed to test the performance of SiC technology employed.


1998 ◽  
Vol 70 (1) ◽  
pp. 149
Author(s):  
T Kokuga
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document