scholarly journals 100 kW Three-Phase Wireless Charger for EV: Experimental Validation Adopting Opposition Method

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2113
Author(s):  
Jacopo Colussi ◽  
Alessandro La Ganga ◽  
Roberto Re ◽  
Paolo Guglielmi ◽  
Eric Armando

This paper presents the experimental validation, using the opposition method, of a high-power three-phase Wireless-Power-Transfer (WPT) system for automotive applications. The system under test consists of three coils with circular sector shape overlapped to minimize the mutual cross-coupling, a three-phase inverter at primary side and a three-phase rectifier at receiver side. In fact thanks to the delta configuration used to connect the coils of the electromagnetic structure, a three-phase Silicon Carbide (SiC) inverter is driving the transmitter side. The resonance tank capacitors are placed outside of the delta configuration reducing in this way their voltage sizing. This WPT system is used as a 100 kW–85 kHz ultrafast battery charger for light delivery vehicle directly supplied by the power grid of tramways. The adopted test-bench for the WPT charger consists of adding circulating boost converter to the system under test to perform the opposition method technique. The experimental results prove the effectiveness of the proposed structure together with the validation of fully exploited simulation analysis. This is demonstrated by transferring 100 kW with more than 94% DC-to-DC efficiency over 50 mm air gap in aligned conditions. Furthermore, testing of Zero-Current and Zero-Voltage commutations are performed to test the performance of SiC technology employed.

2013 ◽  
Vol 768 ◽  
pp. 388-391
Author(s):  
M. Santhosh Rani ◽  
Julie Samantaray ◽  
Subhransu Sekhar Dash

This paper presents a novel application of full-bridge series parallel resonant converter (FBSPRC) for dc source and secondary battery interface. Secondary batteries has been widely used in the application of residential, industrial and commercial energy storage systems because of its low energy conversion loss, which enhances the systems overall efficiency. A series parallel loaded resonant converter (SPRC) which is a subset of DC-DC converter can be operated with either zero-voltage turn-on (above resonant frequency) or zero current turn off (below resonant frequency) to eliminate the turn on and turn-off losses of the semiconductor devices. This converter is widely used to achieve reduction in size of the passive components of the converter such as inductor, capacitor and transformers. Simulation results based on a 12V 45Ah battery charger are proposed to validate the analysis and to demonstrate the performance of the proposed approach. Satisfactory performance is obtained from the measured results. The simulation results validate the effectiveness of the chosen battery charger.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1119 ◽  
Author(s):  
Chun-Wei Lin ◽  
Chang-Yi Peng ◽  
Huang-Jen Chiu

A novel three-phase power-factor-correction (PFC) rectifier with zero-voltage-switching (ZVS) in six main switches and zero-current-switching (ZCS) in the auxiliary switch is proposed, analyzed, and experimentally verified. The main feature of the proposed auxiliary circuit is used to reduce the switching loss when the six main switches are turned on and the one auxiliary switch is turned off. In this paper, a detailed operating analysis of the proposed circuit is given. Modeling and analysis are verified by experimental results based on a three-phase 7 kW rectifier. The soft-switched PFC rectifier shows an improvement in efficiency of 2.25% compared to its hard-switched counterpart at 220 V under full load.


Author(s):  
Tomas A. Gonzalez ◽  
Daniel O. Mercuri ◽  
Hernan E. Tacca ◽  
Maximo E. Pupareli

Modern dc power supplies provide power factor correction but the classical two-stage approach, using hard-switched preregulators, has detrimental effects on efficiency and reliability, particularly for high power applications. With some circuit modifications and the addition of a few magnetic components, diodes and capacitors, we have turned a classical boost power factor corrector into a high efficiency soft-switched version. The proposed converter turns on its single switch with zero current and turns it off with zero voltage. In this paper we explain the proposed changes, we study the waveforms and equations and we verify them with an experimental prototype. We also show how the converter can be used for modular single- and three-phase high power applications.<br /><br />


2015 ◽  
Vol 16 (4) ◽  
pp. 331-337 ◽  
Author(s):  
S. Raghavendran ◽  
B. Chitti Babu ◽  
Luigi Piegari

Abstract This paper investigates a modified simple soft switching dc-dc converter for low power applications. This simple topology uses an auxiliary switch, an inductor and a capacitor to operate the converter without switching losses. The efficiency of the converter is improved by transferring the energy that would be dissipated during the switching to the load. The main switch turns-on with zero current switching (ZCS) and turns-off with zero voltage switching (ZVS), while the auxiliary switch turns-on and turns-off with zero voltage switching (ZVS). The detailed theoretical analysis and the design equations are described. In addition to that, the analysis of proposed converter is demonstrated by both simulation and experimental results for effectiveness of the study.


A soft switching three phase inverter with the fuzzy logic system is proposed . The controller design is explained in this paper. The soft switching is achieved through zero voltage switching methods.The soft switching is attain through auxiliary circuits.Therefore, the auxiliary circuit will be enhanced the conversion efficiency, and the conduction loss will be scaled down. The performance of proposed controller is illustrated using MATLAB Simulink.The mode of the prototype is fabricated and tested. The Simulation and hardware results validate each other, which show that the presented method is both satisfactory and consistent with expectation.


Sign in / Sign up

Export Citation Format

Share Document