automotive suspension
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 37)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 327 ◽  
pp. 149-155
Author(s):  
Song Chen ◽  
Da Quan Li ◽  
Fan Zhang ◽  
Xiao Kang Liang ◽  
Jian Feng ◽  
...  

Steering knuckles are vital functional and structural components in automotive suspension systems, requiring high strength, high ductility, and complex shapes. In this study, an aluminum alloy knuckle with the semi-solid die casting process was developed to replace the conventional steel components. This research aims to optimize product design based on both structural simulation and casting process simulation to avoid defects and to meet mechanical requirements. Furthermore, the optimal design solutions need to be verified through the filling experiments and defect analysis. The results show that the removal of support rib located in the thick area of the shock absorber mounting arm is helpful to avoid the rewelding defects in the filling frontier of the SSM melt. Besides, the position of the steering rod is of medium thickness, and two ribs from different directions come together to support that area. Rewelding defects were detected when two ribs come together. To avoid rewelding defects in local areas of steering rod position, the ribs were reduced to uniform wall thickness. Thus, the local flow state was modified and the SSM melt was reinforced shear action. Ultimately, by controlling all the processes of the SSM die casting process, the high performance of aluminum knuckle was successfully developed.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2533
Author(s):  
Daniel Rodriguez-Guevara ◽  
Antonio Favela-Contreras ◽  
Francisco Beltran-Carbajal ◽  
David Sotelo ◽  
Carlos Sotelo

The control of an automotive suspension system by means of a hydraulic actuator is a complex nonlinear control problem. In this work, a Linear Parameter Varying (LPV) model is proposed to reduce the complexity of the system while preserving the nonlinear behavior. In terms of control, a dual controller consisting of a Model Predictive Control (MPC) and a Linear Quadratic Regulator (LQR) is implemented. To ensure stability, Quadratic Stability conditions are imposed in terms of Linear Matrix Inequalities (LMI). Simulation results for quarter-car model over several disturbances are tested in both frequency and time domain to show the effectiveness of the proposed algorithm.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1290
Author(s):  
Andrew Gryguć ◽  
Seyed Behzad Behravesh ◽  
Hamid Jahed ◽  
Mary Wells ◽  
Bruce Williams ◽  
...  

A closed die forging process was developed to successfully forge an automotive suspension component from AZ80 Mg at a variety of different forging temperatures (300 °C, 450 °C). The properties of the forged component were compared and contrasted with other research works on forged AZ80 Mg at both an intermediate forging and full-scale component forging level. The monotonic response, as well as the stress and strain-controlled fatigue behaviours, were characterized for the forged materials. Stress, strain and energy-based fatigue data were used as a basis for comparison of the durability performance. The effects of the starting material, forging temperature, forging geometry/configuration were all studied and aided in developing a deeper understanding of the process-structure-properties relationship. In general, there is a larger improvement in the material properties due to forging with cast base material as the microstructural modification which enhances both the strength and ductility is more pronounced. In general, the optimum fatigue properties were achieved by using extruded base-material and forging using a closed-die process at higher strain rates and lower temperatures. The merits and drawbacks of various fatigue damage parameters (FDP’s) were investigated for predicting the fatigue behaviour of die-forged AZ80 Mg components, of those investigated, strain energy density (SED) proved to be the most robust method of comparison.


Author(s):  
Byunghyun Kang ◽  
Cheol Choi ◽  
Daeun Sung ◽  
Seongho Yoon ◽  
Byoung-Ho Choi

In this study, friction tests are performed, via a custom-built friction tester, on specimens of natural rubber used in automotive suspension bushings. By analyzing the problematic suspension bushings, the eleven candidate factors that influence squeak noise are selected: surface lubrication, hardness, vulcanization condition, surface texture, additive content, sample thickness, thermal aging, temperature, surface moisture, friction speed, and normal force. Through friction tests, the changes are investigated in frictional force and squeak noise occurrence according to various levels of the influencing factors. The degree of correlation between frictional force and squeak noise occurrence with the factors is determined through statistical tests, and the relationship between frictional force and squeak noise occurrence based on the test results is discussed. Squeak noise prediction models are constructed by considering the interactions among the influencing factors through both multiple logistic regression and neural network analysis. The accuracies of the two prediction models are evaluated by comparing predicted and measured results. The accuracies of the multiple logistic regression and neural network models in predicting the occurrence of squeak noise are 88.2% and 87.2%, respectively.


2021 ◽  
Author(s):  
Francesco D’Elia

Aluminum-copper (Al-Cu) alloy B206 is a high strength and ductile alloy showing promise for use in automotive suspension components. Incorporation of lightweight B206 alloy in automotive suspension components may significantly reduce overall vehicle weight and increase the vehicle’s fuel efficiency. However, one of the major factors inhibiting the use of B206 is its high susceptibility to hot tearing during casting. Hot tearing is a complex phenomenon attributed to alloy solidification, microstructure and stress/strain development within a casting. Numerous methods (e.g. preheating of mold, grain refinement, elimination of sharp corners in a component) help to reduce the occurrence of hot tears in castings, but the underlying mechanisms responsible for hot tearing remain ambiguous. This research aims to advance the understanding of the mechanisms responsible for hot tearing in B206 Al alloy. In this research, the conditions associated with the formation of hot tears in B206 were investigated via ex situ and in situ methods. Titanium was added in three levels (i.e. unrefined, 0.02 and 0.05 wt%) to investigate the effect of grain refinement on hot tearing. Ex situ neutron diffraction strain mapping was carried out on the three B206 castings to determine casting strain and stress. Further, in situ techniques were used to establish the onset temperature and solid fraction of hot tearing in B206 and to improve the understanding of microstructure development in B206. The results indicate that titanium additions had a significant impact on the hot tearing susceptibility of B206, by effectively reducing grain size and transforming grain morphology from coarse dendrites to fine globular grains. Further, thermal analysis suggested that grain refinement delayed the onset of dendrite coherency in B206 and therefore enhanced the duration of bulk liquid metal feeding for the refined casting conditions. As a result, the interactive effects of such factors resulted in a more uniform distribution of strain, and subsequent higher resistance to hot tearing for the grain refined castings. Finally, in situ analysis determined the onset solid fraction of hot tearing in B206 and provided an understanding of the role of microstructure on hot tearing in B206.


2021 ◽  
Author(s):  
Francesco D’Elia

Aluminum-copper (Al-Cu) alloy B206 is a high strength and ductile alloy showing promise for use in automotive suspension components. Incorporation of lightweight B206 alloy in automotive suspension components may significantly reduce overall vehicle weight and increase the vehicle’s fuel efficiency. However, one of the major factors inhibiting the use of B206 is its high susceptibility to hot tearing during casting. Hot tearing is a complex phenomenon attributed to alloy solidification, microstructure and stress/strain development within a casting. Numerous methods (e.g. preheating of mold, grain refinement, elimination of sharp corners in a component) help to reduce the occurrence of hot tears in castings, but the underlying mechanisms responsible for hot tearing remain ambiguous. This research aims to advance the understanding of the mechanisms responsible for hot tearing in B206 Al alloy. In this research, the conditions associated with the formation of hot tears in B206 were investigated via ex situ and in situ methods. Titanium was added in three levels (i.e. unrefined, 0.02 and 0.05 wt%) to investigate the effect of grain refinement on hot tearing. Ex situ neutron diffraction strain mapping was carried out on the three B206 castings to determine casting strain and stress. Further, in situ techniques were used to establish the onset temperature and solid fraction of hot tearing in B206 and to improve the understanding of microstructure development in B206. The results indicate that titanium additions had a significant impact on the hot tearing susceptibility of B206, by effectively reducing grain size and transforming grain morphology from coarse dendrites to fine globular grains. Further, thermal analysis suggested that grain refinement delayed the onset of dendrite coherency in B206 and therefore enhanced the duration of bulk liquid metal feeding for the refined casting conditions. As a result, the interactive effects of such factors resulted in a more uniform distribution of strain, and subsequent higher resistance to hot tearing for the grain refined castings. Finally, in situ analysis determined the onset solid fraction of hot tearing in B206 and provided an understanding of the role of microstructure on hot tearing in B206.


Sign in / Sign up

Export Citation Format

Share Document