Robust calibration and control of robotic manipulators

Author(s):  
G. Calafiore ◽  
M. Indri
1989 ◽  
Vol 42 (4) ◽  
pp. 117-128 ◽  
Author(s):  
S. S. Rao ◽  
P. K. Bhatti

Robotics is a relatively new and evolving technology being applied to manufacturing automation and is fast replacing the special-purpose machines or hard automation as it is often called. Demands for higher productivity, better and uniform quality products, and better working environments are primary reasons for its development. An industrial robot is a multifunctional and computer-controlled mechanical manipulator exhibiting a complex and highly nonlinear behavior. Even though most current robots have anthropomorphic configurations, they have far inferior manipulating abilities compared to humans. A great deal of research effort is presently being directed toward improving their overall performance by using optimal mechanical structures and control strategies. The optimal design of robot manipulators can include kinematic performance characteristics such as workspace, accuracy, repeatability, and redundancy. The static load capacity as well as dynamic criteria such as generalized inertia ellipsoid, dynamic manipulability, and vibratory response have also been considered in the design stages. The optimal control problems typically involve trajectory planning, time-optimal control, energy-optimal control, and mixed-optimal control. The constraints in a robot manipulator design problem usually involve link stresses, actuator torques, elastic deformation of links, and collision avoidance. This paper presents a review of the literature on the issues of optimum design and control of robotic manipulators and also the various optimization techniques currently available for application to robotics.


2000 ◽  
Vol 24 (12) ◽  
pp. 881-898 ◽  
Author(s):  
Mohamed Zribi ◽  
Mansour Karkoub ◽  
Loulin Huang

1991 ◽  
Vol 113 (3) ◽  
pp. 272-279 ◽  
Author(s):  
H. Lipkin ◽  
E. Pohl

Kinematic singularities are important considerations in the design and control of robotic manipulators. For six degree-of-freedom manipulators, the vanishing of the determinant of the Jacobian yields the conditions for the primary singularities. Examining the vanishing of the minors of the Jacobian yields further singularities which are special cases of the primary ones. A systematic procedure is presented to efficiently enumerate all possible singular configurations. Special geometries of representative manipulators are exploited by expressing the Jacobian in terms of vector elements. In contrast to using a joint-angle space approach, the resulting expressions yield direct physical interpretations.


Sign in / Sign up

Export Citation Format

Share Document