scholarly journals Extended-State-Observer-Based Chattering Free Sliding Mode Control for Nonlinear Systems With Mismatched Disturbance

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 22952-22957 ◽  
Author(s):  
Sheng-Li Shi ◽  
Jian-Xiong Li ◽  
Yi-Ming Fang
2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Zhenxin He ◽  
Chuntong Liu ◽  
Ying Zhan ◽  
Hongcai Li ◽  
Xianxiang Huang ◽  
...  

A continuous nonsingular fast terminal sliding mode (NFTSM) control scheme with the extended state observer (ESO) and the tracking differentiator (TD) is proposed for second-order uncertain SISO nonlinear systems. The system’s disturbances and states can be estimated by introducing the ESO, then the disturbances are compensated effectively, and the ideal transient process of the system can be arranged based on TD to provide the target tracking signal and its high-order derivatives. The proposed controller obtains finite-time convergence property and keeps good robustness of sliding mode control (SMC) for disturbances. Moreover, compared with conventional SMC, the proposed control law is continuous and no chattering phenomenon exists. The property of system stability is guaranteed by Lyapunov stability theory. The simulation results show that the proposed method can be employed to shorten the system reaching time, improve the system tracking precision, and suppress the system chattering and the input noise. The proposed control method is finally applied for the rotating control problem of theodolite servo system.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2011 ◽  
Vol 19 (10) ◽  
pp. 2409-2418
Author(s):  
马晓军 MA Xiao-jun ◽  
袁东 YUAN Dong ◽  
李匡成 LI Kuang-cheng ◽  
魏曙光 WEI Shu-guang

Sign in / Sign up

Export Citation Format

Share Document