tracking differentiator
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 67)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
pp. 101656
Author(s):  
Wameedh Riyadh Abdul-Adheem ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi ◽  
Ahmed Alkhayyat ◽  
Rami A. Maher ◽  
...  

2021 ◽  
Vol 2121 (1) ◽  
pp. 012042
Author(s):  
Kankan Deng ◽  
Jianming Miao ◽  
Xingyu Sun

Abstract This paper proposes a novel robust controller for horizontal path-following problem of an underactuated AUV subject to multiple uncertainties and state constraints. Firstly, four reduced-order extended state observes (ESOs) are designed to estimate the multiple uncertainties, and the estimated values are adopted in the design of kinematic and dynamic controller. Secondly, to address the state constraints, the barrier Lyapunov function is incorporated with the kinematic controller. To resolve the problem of input saturation, the auxiliary design system is utilized in the dynamic controller. To address the problem of “explosion of complexity” inherent in the conventional back-stepping method, a nonlinear tracking differentiator is utilized to obtain the derivative of the desired yaw speed. Finally, the results of numerical simulation are performed to demonstrate the effectiveness of the proposed controller.


Author(s):  
Sen Li ◽  
XiaoHua Cao

Aiming at the low precision problem of multi-cylinder cooperative propulsion control in different regions of shield propulsion hydraulic systems under conditions of large load changes, this paper proposes a tracking differentiator and self-adaptive nonlinear PID (TD-NPID) control method to improve the synchronous control characteristics of shield propulsion hydraulic systems. First, the working principles of shield propulsion hydraulic systems were analyzed, and a mathematical model and TD-NPID controller were developed. Then, a simulation model was developed in AMESim-MATLAB environment, and the synchronous dynamic performances of fuzzy PID control, conventional PID control, and TD-NPID control were compared and analyzed. The results demonstrated that the shield propulsion hydraulic system with TD-NPID control had better servo tracking ability and steady-state performance than the systems with fuzzy or conventional PID control, which verified the feasibility of the application of TD-NPID control for the synchronous control of shield propulsion hydraulic systems.


Author(s):  
Luyao Zhang ◽  
Shengquan Li ◽  
Chaowei Zhu ◽  
Juan Li

This paper proposes a disturbance rejection method with extended state observer (ESO) and a tracking differentiator (TD) to realize vibration suppression of all-clamped plate structure in the presence of lumped disturbance, i.e. internal dynamic uncertainties, unknown external forces and accelerometer measurement noises. First, the structure is modeled as two degrees of freedom system based on vibration characteristics. Second, an ESO is employed to ensure the vibration suppression performance by estimating the lumped disturbances and compensating these disturbances via real-time feedforward mechanism. Meanwhile, a TD is introduced to eliminate the influence of the measurement noises. Moreover, the stability of the closed-loop system is discussed in detail. Finally, the proposed controller is verified on the hardware-in-loop plat-form based on NI PCIe-6343 data acquisition card. Theoretical analysis and experimental results show that the proposed method possesses good vibration suppression performance.


Sign in / Sign up

Export Citation Format

Share Document