scholarly journals A New Motor Imagery EEG Classification Method FB-TRCSP+RF Based on CSP and Random Forest

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 44944-44950 ◽  
Author(s):  
Ranran Zhang ◽  
Xiaoyan Xiao ◽  
Zhi Liu ◽  
Wei Jiang ◽  
Jianwen Li ◽  
...  
2014 ◽  
Vol 41 (12) ◽  
pp. 1050-1057
Author(s):  
David Lee ◽  
Hee-Jae Lee ◽  
Sang-Goog Lee

2020 ◽  
Vol 4 (5) ◽  
pp. 805-812
Author(s):  
Riska Chairunisa ◽  
Adiwijaya ◽  
Widi Astuti

Cancer is one of the deadliest diseases in the world with a mortality rate of 57,3% in 2018 in Asia. Therefore, early diagnosis is needed to avoid an increase in mortality caused by cancer. As machine learning develops, cancer gene data can be processed using microarrays for early detection of cancer outbreaks. But the problem that microarray has is the number of attributes that are so numerous that it is necessary to do dimensional reduction. To overcome these problems, this study used dimensions reduction Discrete Wavelet Transform (DWT) with Classification and Regression Tree (CART) and Random Forest (RF) as classification method. The purpose of using these two classification methods is to find out which classification method produces the best performance when combined with the DWT dimension reduction. This research use five microarray data, namely Colon Tumors, Breast Cancer, Lung Cancer, Prostate Tumors and Ovarian Cancer from Kent-Ridge Biomedical Dataset. The best accuracy obtained in this study for breast cancer data were 76,92% with CART-DWT, Colon Tumors 90,1% with RF-DWT, lung cancer 100% with RF-DWT, prostate tumors 95,49% with RF-DWT, and ovarian cancer 100% with RF-DWT. From these results it can be concluded that RF-DWT is better than CART-DWT.  


2021 ◽  
Vol 87 (10) ◽  
pp. 747-758
Author(s):  
Toshihiro Sakamoto

An early crop classification method is functionally required in a near-real-time crop-yield prediction system, especially for upland crops. This study proposes methods to estimate the mixed-pixel ratio of corn, soybean, and other classes within a low-resolution MODIS pixel by coupling MODIS-derived crop phenology information and the past Cropland Data Layer in a random-forest regression algorithm. Verification of the classification accuracy was conducted for the Midwestern United States. The following conclusions are drawn: The use of the random-forest algorithm is effective in estimating the mixed-pixel ratio, which leads to stable classification accuracy; the fusion of historical data and MODIS-derived crop phenology information provides much better crop classification accuracy than when these are used individually; and the input of a longer MODIS data period can improve classification accuracy, especially after day of year 279, because of improved estimation accuracy for the soybean emergence date.


Sign in / Sign up

Export Citation Format

Share Document