scholarly journals An Optimized Water Distribution Model of Irrigation District Based on the Genetic Backtracking Search Algorithm

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 145692-145704 ◽  
Author(s):  
Zhipeng Sun ◽  
Jian Chen ◽  
Yu Han ◽  
Rui Huang ◽  
Qi Zhang ◽  
...  
2020 ◽  
Vol 12 (4) ◽  
pp. 1580
Author(s):  
Jingjing Wu ◽  
Jian Chen ◽  
Yu Han ◽  
Tongshu Li

The canal delivery system is the main infrastructure of agricultural irrigation. The efficiency of water use in agriculture can be achieved by mastering the dynamic process of unsteady flow in the channel. In this study, an unsteady flow model for the calculation of the water flow transition information of the river channel during the water distribution process was established, based on the water distribution scheme given by the backtracking-search algorithm (BSA). This model was more suitable for areas with inefficient channel systems. The research areas included the main irrigation channels in Xiying City, which is one of the typical agricultural areas in northwestern China. The scheme obtained by optimal solution proposed for Xiying Irrigation District was feasible. According to the results of the flow simulations, the sluice gate calculation correlation could determine the change process of the gate opening of each channel, which provided a basis to realize the modernization of the irrigation area.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zhao ◽  
Zhicheng Jia ◽  
Lei Chen ◽  
Yanju Guo

Backtracking search algorithm (BSA) is a relatively new evolutionary algorithm, which has a good optimization performance just like other population-based algorithms. However, there is also an insufficiency in BSA regarding its convergence speed and convergence precision. For solving the problem shown in BSA, this article proposes an improved BSA named COBSA. Enlightened by particle swarm optimization (PSO) algorithm, population control factor is added to the variation equation aiming to improve the convergence speed of BSA, so as to make algorithm have a better ability of escaping the local optimum. In addition, enlightened by differential evolution (DE) algorithm, this article proposes a novel evolutionary equation based on the fact that the disadvantaged group will search just around the best individual chosen from previous iteration to enhance the ability of local search. Simulation experiments based on a set of 18 benchmark functions show that, in general, COBSA displays obvious superiority in convergence speed and convergence precision when compared with BSA and the comparison algorithms.


Sign in / Sign up

Export Citation Format

Share Document