scholarly journals CFD Studies of Wake Characteristics and Power Capture of Wind Turbines With Trailing Edge Flaps

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 7349-7361
Author(s):  
Wenguang Zhang ◽  
Yuanyuan Wang ◽  
Yangzhi Shen ◽  
Yang Wang ◽  
Yue Xu ◽  
...  
2019 ◽  
Vol 141 (11) ◽  
Author(s):  
M. Rafiuddin Ahmed ◽  
Epeli Nabolaniwaqa

The flow characteristics and the lift and drag behavior of a thick trailing-edged airfoil that was provided with fixed trailing-edge flaps (Gurney flaps) of 1–5% height right at the back of the airfoil were studied both experimentally and numerically at different low Reynolds numbers (Re) and angles of attack for possible applications in wind turbines suitable for the wind speeds of 4–6 m/s. The flap considerably improves the suction on the upper surface of the airfoil resulting in a higher lift coefficient. The drag coefficient also increased; however, the increase was less compared with the increase in the lift coefficient, resulting in a higher lift-to-drag ratio in the angles of attack of interest. The results show that trailing-edge flaps can improve the performance of blades designed for low wind speeds and can be directly applied to small wind turbines that are increasingly being used in remote places or in smaller countries.


2017 ◽  
Vol 136 ◽  
pp. 176-181 ◽  
Author(s):  
Nils-Christan Oltmann ◽  
Dorit Sobotta ◽  
Arndt Hoffmann

Author(s):  
Muraleekrishnan Menon ◽  
Fernando L. Ponta

Abstract The significance of wind power and the associated relevance of utility-scale wind turbines are becoming more prominent in tapping renewable sources for power. Operational wind turbines today rated at 8 MW have rotor diameters of 164 m. Economies-of-scale factor suggest a sustained growth in rotor size, forecasting the use of longer and heavier blades. This has led to an increased emphasis on studies related to improvements and innovations in aerodynamic load-control methodologies. Among several approaches to controlling the stochastic aerodynamics loads on wind turbine rotors, most popular is the pitch control. Widely used in operational wind turbines, conventional pitch control is an effective approach for long-term load variations. However, their application to mitigate short-term fluctuations have limitations that present a bottleneck for growth in rotor size. Sporadic changes occurring within short time scales near the turbine rotor have significant impact on the aeroelastic behavior of the blades, power generation, with long-term effects on the rotor life-span. Cyclic variations occurring within few seconds emphasize the need for swift response of control methods that counter the resulting adverse effects. Current study revolves around the need to evaluate innovative active load control techniques that can swiftly handle high frequency oscillations in dynamic loading of turbine rotors. This may result from sudden changes in wind conditions due to gusts, environmental effects like atmospheric boundary layer and uneven terrain, or from turbine design features and operating conditions such as tower shadow effects. The upward surge in rotor size is linked with a down-side for existing techniques in rotor control that now need to account for heavier blades and the associated inertia. For example, the pitching operation rotates the entire blade around its longitudinal axis to regulate angle of wind at specific blade sections, involving huge inertial loads associated with the entire blade. On the other hand, active flow-control devices (FCDs) have the potential to alleviate load variations through rapid aerodynamic trimming. Trailing-edge flaps are light weight attachments on blades that have gradually gained relevance in studies focused on wind turbine aerodynamics and active load control. This computational study presents an aeroelastic assessment of a benchmark wind turbine based on the NREL 5-MW Reference Wind Turbine (RWT), with added trailing-edge flaps for rapid load control. The standard blades used on the NREL 5-MW RWT rotor are aerodynamically modified to equip them with actively controllable fractional-chord trailing-edge flaps, along a selected span. The numerical code used in the study handles the complex multi-physics dynamics of a wind turbine based on a self-adaptive ODE algorithm that integrates the dynamics of the control system in to the coupled response of aerodynamics and structural deformations of the rotor. Using the 5-MW RWT as a reference, the blades are modified to add trailing-edge flaps with Clark Y profile and constant chord. Attached at chosen sections of the blade, these devices have a specific range of operational actuation angles. Numerical experiments cover scenarios relevant to the aeroelastic response of a rotor with such adapted blades under operating conditions observed in utility-scale wind turbines. These fractional-chord devices attached along short spans of the blades make them light weight devices that can be easily controlled using low power of actuation. This overcomes the bottleneck in active aerodynamic load control, giving flexibility to study a wider ranged of control strategies for utility-scale wind turbines of the future. Preliminary outcomes suggest that rapid active flow control has high potential in shaping the future of aerodynamic load control in wind turbines.


2020 ◽  
Vol 1618 ◽  
pp. 042026
Author(s):  
Roland Feil ◽  
Nikhar Abbas ◽  
Pietro Bortolotti ◽  
Nick Johnson ◽  
Ben Mertz

Wind Energy ◽  
2015 ◽  
Vol 19 (2) ◽  
pp. 243-263 ◽  
Author(s):  
Bing Feng Ng ◽  
Rafael Palacios ◽  
Eric C. Kerrigan ◽  
J. Michael R. Graham ◽  
Henrik Hesse

Author(s):  
Johannes Riemenschneider ◽  
Martin Pohl ◽  
Róbert Ungurán ◽  
Vlaho Petrović ◽  
Martin Kühn ◽  
...  

In order to reduce the “cost of energy” for wind turbines it is an ongoing trend to increase the rotor diameter, which increases fatigue loads in the blade root area. Thus, a critical prerequisite for increased rotor diameter is the reduction of loads, which can be utilized by passive and active measures. This paper is giving an overview of current research work towards the use of a flexible trailing edge for load reduction as it is being pursued in the German national SmartBlades project. The active trailing edge is designed to change the lift of the outer blade in a way to counteract sudden changes caused by gusts or wind shear. Areas that are covered include the simulation towards the load reduction potential of such flexible trailing edges, the structural design of the trailing edge itself as a compliant mechanism, its experimental validation and fatigue investigation as well as multistable approaches for the design of such trailing edge flaps.


Author(s):  
Mohammed Rafiuddin Ahmed ◽  
Epeli Nabolaniwaqa

The flow characteristics and the lift and drag behavior of a newly designed thick trailing-edged airfoil that was provided with fixed trailing edge flaps (Gurney flaps) of 1% to 5% height right at the back of the airfoil were studied at different low Reynolds numbers (Re) and angles of attack for possible applications in wind turbines suitable for the wind speeds of 4–6 m/s that are common in the Pacific Island Countries. A thick trailing-edged blade section, AF300, that was designed and tested in a recent work for small horizontal axis wind turbines to improve the turbine’s startup and performance at low wind speeds was chosen for this study. Experiments were performed on the AF300 airfoil in a wind tunnel at different Re, flap heights and angles of attack. Pressure distributions were obtained across the surface of the airfoil and the lift and drag forces were measured for different cases. It was found that the flap considerably improves the suction on the upper surface of the airfoil resulting in a high lift coefficient. For some of the angles, in the case of 3 mm and 4 mm flaps, the peak Cp values on the suction surface were significantly higher compared to those without the flap. However, at angles of attack of 12° and above, this unusually high Cp on the upper surface close to the leading edge caused flow separation for some cases as the flow could not withstand the strong adverse pressure gradient. The CFX results matched most of the experimental results without flaps, except that the suction peak was lower numerically. The difference was higher for the case with flaps. It is clear from the results that trailing-edge flaps can be used to improve the performance of small wind turbines designed for low wind speeds.


1999 ◽  
Vol 10 (11) ◽  
pp. 855-871
Author(s):  
MICHAEL G. SPENCER ◽  
ROBERT M. SANNER ◽  
INDERJIT CHOPRA

Sign in / Sign up

Export Citation Format

Share Document