scholarly journals Trajectory Tracking Based on Adaptive Sliding Mode Control for Agricultural Tractor

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 113021-113029
Author(s):  
Chengqiang Yin ◽  
Shourui Wang ◽  
Xiaowei Li ◽  
Guanhao Yuan ◽  
Chao Jiang
2016 ◽  
Vol 70 (1) ◽  
pp. 149-164 ◽  
Author(s):  
Zhenzhong Chu ◽  
Daqi Zhu ◽  
Simon X. Yang ◽  
Gene Eu Jan

This paper focuses on depth trajectory tracking control for a Remotely Operated Vehicle (ROV) with dead-zone nonlinearity and saturation nonlinearity of thruster; an adaptive sliding mode control method based on neural network is proposed. Through the analysis of dead-zone nonlinearity and saturation nonlinearity of thruster, the depth trajectory tracking control system model of a ROV which uses thruster control signals as system input has been established. According to the principle of sliding mode control, an adaptive sliding mode depth trajectory tracking controller is built by using three-layer feed-forward neural network for online identification of unknown items. The selection method and update laws of the control parameters are also given. The uniform ultimate boundedness of trajectory tracking error is analysed by Lyapunov theorem. Finally, the effectiveness of the proposed method is illustrated by simulations.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


Sign in / Sign up

Export Citation Format

Share Document