scholarly journals Short-Term Passenger Flow Prediction for Urban Rail Stations Using Learning Network Based on Optimal Passenger Flow Information Input Algorithm

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 170742-170753
Author(s):  
Bo Wang ◽  
Mao Ye ◽  
Zhenjun Zhu ◽  
Yan Li ◽  
Qiangsheng Liang ◽  
...  
Author(s):  
Wei Li ◽  
Liying Sui ◽  
Min Zhou ◽  
Hairong Dong

AbstractShort-term passenger flow prediction in urban rail transit plays an important role because it in-forms decision-making on operation scheduling. However, passenger flow prediction is affected by many factors. This study uses the seasonal autoregressive integrated moving average model (SARIMA) and support vector machines (SVM) to establish a traffic flow prediction model. The model is built using intelligent data provided by a large-scale urban traffic flow warning system, such as accurate passenger flow data, collected using the Internet of things and sensor networks. The model proposed in this paper can adapt to the complexity, nonlinearity, and periodicity of passenger flow in urban rail transit. Test results on a Beijing traffic dataset show that the SARI-MA–SVM model can improve accuracy and reduce errors in traffic prediction. The obtained pre-diction fits well with the measured data. Therefore, the SARIMA–SVM model can fully charac-terize traffic variations and is suitable for passenger flow prediction.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 42946-42955 ◽  
Author(s):  
Jianyuan Guo ◽  
Zhen Xie ◽  
Yong Qin ◽  
Limin Jia ◽  
Yaguan Wang

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaoqing Dai ◽  
Lijun Sun ◽  
Yanyan Xu

Reliable prediction of short-term passenger flow could greatly support metro authorities’ decision processes, help passengers to adjust their travel schedule, or, in extreme cases, assist emergency management. The inflow and outflow of the metro station are strongly associated with the travel demand within metro networks. The purpose of this paper is to obtain such prediction. We first collect the origin-destination information from the smart-card data and explore the passenger flow patterns in a metro system. We then propose a data driven framework for short-term metro passenger flow prediction with the ability to utilize both spatial and temporal related information. The approach adopts two forecasts as basic models and then uses a probabilistic model selection method, random forest classification, to combine the two outputs to achieve a better forecast. In the experiments, we compare the proposed model with four other prediction models, i.e., autoregressive-moving-average, neural networks, support vector regression, and averaging ensemble model, as well as the basic models. The results indicate that the proposed approach outperforms the others in most cases. The origin-destination flows extracted from smart-card data can be successfully exploited to describe different metro travel patterns. And the framework proposed here, especially the probabilistic combination method, can improve the performance of short-term transportation prediction.


Sign in / Sign up

Export Citation Format

Share Document