scholarly journals Joint Matrix Factorization: A Novel Approach for Recommender System

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 224596-224607
Author(s):  
Shaolun Sun ◽  
Yuetong Xiao ◽  
Yue Huang ◽  
Sen Zhang ◽  
Heng Zheng ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Farman Ullah ◽  
Ghulam Sarwar ◽  
Sungchang Lee

We propose a network and visual quality aware N-Screen content recommender system. N-Screen provides more ways than ever before to access multimedia content through multiple devices and heterogeneous access networks. The heterogeneity of devices and access networks present new questions of QoS (quality of service) in the realm of user experience with content. We propose, a recommender system that ensures a better visual quality on user’s N-screen devices and the efficient utilization of available access network bandwidth with user preferences. The proposed system estimates the available bandwidth and visual quality on users N-Screen devices and integrates it with users preferences and contents genre information to personalize his N-Screen content. The objective is to recommend content that the user’s N-Screen device and access network are capable of displaying and streaming with the user preferences that have not been supported in existing systems. Furthermore, we suggest a joint matrix factorization approach to jointly factorize the users rating matrix with the users N-Screen device similarity and program genres similarity. Finally, the experimental results show that we also enhance the prediction and recommendation accuracy, sparsity, and cold start issues.


2021 ◽  
Vol 11 (6) ◽  
pp. 2817
Author(s):  
Tae-Gyu Hwang ◽  
Sung Kwon Kim

A recommender system (RS) refers to an agent that recommends items that are suitable for users, and it is implemented through collaborative filtering (CF). CF has a limitation in improving the accuracy of recommendations based on matrix factorization (MF). Therefore, a new method is required for analyzing preference patterns, which could not be derived by existing studies. This study aimed at solving the existing problems through bias analysis. By analyzing users’ and items’ biases of user preferences, the bias-based predictor (BBP) was developed and shown to outperform memory-based CF. In this paper, in order to enhance BBP, multiple bias analysis (MBA) was proposed to efficiently reflect the decision-making in real world. The experimental results using movie data revealed that MBA enhanced BBP accuracy, and that the hybrid models outperformed MF and SVD++. Based on this result, MBA is expected to improve performance when used as a system in related studies and provide useful knowledge in any areas that need features that can represent users.


2020 ◽  
pp. 1-1
Author(s):  
Ruixin Guo ◽  
Feng Zhang ◽  
Lizhe Wang ◽  
Wusheng Zhang ◽  
Xinya Lei ◽  
...  

2019 ◽  
Vol 28 (05) ◽  
pp. 1950019 ◽  
Author(s):  
Nicolás Torres ◽  
Marcelo Mendoza

Clustering-based recommender systems bound the seek of similar users within small user clusters providing fast recommendations in large-scale datasets. Then groups can naturally be distributed into different data partitions scaling up in the number of users the recommender system can handle. Unfortunately, while the number of users and items included in a cluster solution increases, the performance in terms of precision of a clustering-based recommender system decreases. We present a novel approach that introduces a cluster-based distance function used for neighborhood computation. In our approach, clusters generated from the training data provide the basis for neighborhood selection. Then, to expand the search of relevant users, we use a novel measure that can exploit the global cluster structure to infer cluster-outside user’s distances. Empirical studies on five widely known benchmark datasets show that our proposal is very competitive in terms of precision, recall, and NDCG. However, the strongest point of our method relies on scalability, reaching speedups of 20× in a sequential computing evaluation framework and up to 100× in a parallel architecture. These results show that an efficient implementation of our cluster-based CF method can handle very large datasets providing also good results in terms of precision, avoiding the high computational costs involved in the application of more sophisticated techniques.


Sign in / Sign up

Export Citation Format

Share Document