scholarly journals Low-Order Model Identification and Adaptive Observer-Based Predictive Control for Strip Temperature of Heating Section in Annealing Furnace

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Minseok Seo ◽  
Jaepil Ban ◽  
Mingi Cho ◽  
Bae Young Koo ◽  
Sang Woo Kim
2008 ◽  
Vol 206 (2) ◽  
pp. 543-554 ◽  
Author(s):  
T. Djamah ◽  
R. Mansouri ◽  
S. Djennoune ◽  
M. Bettayeb

Author(s):  
Brian F. Eberle ◽  
Jonathan D. Rogers

There is increasing demand for full or partial automation of autorotation maneuvers for next-generation helicopters, which may be optionally piloted or capable of fully autonomous flight. A key challenge in the development of autorotation controllers lies in the competing state constraints that often arise during the terminal, or flare, phase of the maneuver. This paper describes the development of a nonlinear model predictive control (NMPC) scheme for autorotation flare. The NMPC controller uses a nonlinear low-order model of the helicopter in autorotation to optimize the sequence of control inputs over a finite horizon. The proposed control scheme offers benefits over existing methods by balancing the simultaneous control objectives of trajectory tracking and rotor speed regulation while also requiring minimal computation time. Simulation results are presented for a six-degree-of-freedom model of the AH-1G aircraft, highlighting the benefits of the model-based control algorithm over a simpler proportional-integral-derivative control scheme. Trade studies and Monte Carlo simulations are presented that quantify the robustness of the controller to varying initial conditions, various target landing distances, and parametric error in the internal low-order model.


2013 ◽  
Vol 60 (3) ◽  
pp. 319-333
Author(s):  
Rafał Hein ◽  
Cezary Orlikowski

Abstract In the paper, the authors describe the method of reduction of a model of rotor system. The proposed approach makes it possible to obtain a low order model including e.g. non-proportional damping or the gyroscopic effect. This method is illustrated using an example of a rotor system. First, a model of the system is built without gyroscopic and damping effects by using the rigid finite element method. Next, this model is reduced. Finally, two identical, low order, reduced models in two perpendicular planes are coupled together by means of gyroscopic and damping interaction to form one model of the system. Thus a hybrid model is obtained. The advantage of the presented method is that the number of gyroscopic and damping interactions does not affect the model range


2021 ◽  
Vol 5 (4) ◽  
pp. 1387-1392
Author(s):  
Marcelo A. Xavier ◽  
Aloisio K. de Souza ◽  
Kiana Karami ◽  
Gregory L. Plett ◽  
M. Scott Trimboli

2016 ◽  
Vol 108 ◽  
pp. 614-627 ◽  
Author(s):  
Etienne Videcoq ◽  
Manuel Girault ◽  
Vincent Ayel ◽  
Cyril Romestant ◽  
Yves Bertin

Sign in / Sign up

Export Citation Format

Share Document