scholarly journals Tactical Decision-making for Autonomous Driving using Dueling Double Deep Q Network with Double Attention

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Shuwei Zhang ◽  
Yutian Wu ◽  
Harutoshi Ogai ◽  
Hiroshi Inujima ◽  
Shigeyuki Tateno
2020 ◽  
Vol 5 (2) ◽  
pp. 294-305 ◽  
Author(s):  
Carl-Johan Hoel ◽  
Katherine Driggs-Campbell ◽  
Krister Wolff ◽  
Leo Laine ◽  
Mykel J. Kochenderfer

2010 ◽  
Author(s):  
David A. Kobus ◽  
Jason M. Kobus ◽  
Jared Ostertag ◽  
Matthew Kelly ◽  
Erica D. Palmer

2021 ◽  
Vol 10 (3) ◽  
pp. 42
Author(s):  
Mohammed Al-Nuaimi ◽  
Sapto Wibowo ◽  
Hongyang Qu ◽  
Jonathan Aitken ◽  
Sandor Veres

The evolution of driving technology has recently progressed from active safety features and ADAS systems to fully sensor-guided autonomous driving. Bringing such a vehicle to market requires not only simulation and testing but formal verification to account for all possible traffic scenarios. A new verification approach, which combines the use of two well-known model checkers: model checker for multi-agent systems (MCMAS) and probabilistic model checker (PRISM), is presented for this purpose. The overall structure of our autonomous vehicle (AV) system consists of: (1) A perception system of sensors that feeds data into (2) a rational agent (RA) based on a belief–desire–intention (BDI) architecture, which uses a model of the environment and is connected to the RA for verification of decision-making, and (3) a feedback control systems for following a self-planned path. MCMAS is used to check the consistency and stability of the BDI agent logic during design-time. PRISM is used to provide the RA with the probability of success while it decides to take action during run-time operation. This allows the RA to select movements of the highest probability of success from several generated alternatives. This framework has been tested on a new AV software platform built using the robot operating system (ROS) and virtual reality (VR) Gazebo Simulator. It also includes a parking lot scenario to test the feasibility of this approach in a realistic environment. A practical implementation of the AV system was also carried out on the experimental testbed.


2021 ◽  
Vol 31 (3) ◽  
pp. 1-26
Author(s):  
Aravind Balakrishnan ◽  
Jaeyoung Lee ◽  
Ashish Gaurav ◽  
Krzysztof Czarnecki ◽  
Sean Sedwards

Reinforcement learning (RL) is an attractive way to implement high-level decision-making policies for autonomous driving, but learning directly from a real vehicle or a high-fidelity simulator is variously infeasible. We therefore consider the problem of transfer reinforcement learning and study how a policy learned in a simple environment using WiseMove can be transferred to our high-fidelity simulator, W ise M ove . WiseMove is a framework to study safety and other aspects of RL for autonomous driving. W ise M ove accurately reproduces the dynamics and software stack of our real vehicle. We find that the accurately modelled perception errors in W ise M ove contribute the most to the transfer problem. These errors, when even naively modelled in WiseMove , provide an RL policy that performs better in W ise M ove than a hand-crafted rule-based policy. Applying domain randomization to the environment in WiseMove yields an even better policy. The final RL policy reduces the failures due to perception errors from 10% to 2.75%. We also observe that the RL policy has significantly less reliance on velocity compared to the rule-based policy, having learned that its measurement is unreliable.


Sign in / Sign up

Export Citation Format

Share Document