scholarly journals Transfer Learning, Style Control, and Speaker Reconstruction Loss for Zero-Shot Multilingual Multi-Speaker Text-to-Speech on Low-Resource Languages

IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Kurniawati Azizah ◽  
Wisnu Jatmiko
Author(s):  
Zolzaya Byambadorj ◽  
Ryota Nishimura ◽  
Altangerel Ayush ◽  
Kengo Ohta ◽  
Norihide Kitaoka

AbstractDeep learning techniques are currently being applied in automated text-to-speech (TTS) systems, resulting in significant improvements in performance. However, these methods require large amounts of text-speech paired data for model training, and collecting this data is costly. Therefore, in this paper, we propose a single-speaker TTS system containing both a spectrogram prediction network and a neural vocoder for the target language, using only 30 min of target language text-speech paired data for training. We evaluate three approaches for training the spectrogram prediction models of our TTS system, which produce mel-spectrograms from the input phoneme sequence: (1) cross-lingual transfer learning, (2) data augmentation, and (3) a combination of the previous two methods. In the cross-lingual transfer learning method, we used two high-resource language datasets, English (24 h) and Japanese (10 h). We also used 30 min of target language data for training in all three approaches, and for generating the augmented data used for training in methods 2 and 3. We found that using both cross-lingual transfer learning and augmented data during training resulted in the most natural synthesized target speech output. We also compare single-speaker and multi-speaker training methods, using sequential and simultaneous training, respectively. The multi-speaker models were found to be more effective for constructing a single-speaker, low-resource TTS model. In addition, we trained two Parallel WaveGAN (PWG) neural vocoders, one using 13 h of our augmented data with 30 min of target language data and one using the entire 12 h of the original target language dataset. Our subjective AB preference test indicated that the neural vocoder trained with augmented data achieved almost the same perceived speech quality as the vocoder trained with the entire target language dataset. Overall, we found that our proposed TTS system consisting of a spectrogram prediction network and a PWG neural vocoder was able to achieve reasonable performance using only 30 min of target language training data. We also found that by using 3 h of target language data, for training the model and for generating augmented data, our proposed TTS model was able to achieve performance very similar to that of the baseline model, which was trained with 12 h of target language data.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Gong-Xu Luo ◽  
Ya-Ting Yang ◽  
Rui Dong ◽  
Yan-Hong Chen ◽  
Wen-Bo Zhang

Neural machine translation (NMT) for low-resource languages has drawn great attention in recent years. In this paper, we propose a joint back-translation and transfer learning method for low-resource languages. It is widely recognized that data augmentation methods and transfer learning methods are both straight forward and effective ways for low-resource problems. However, existing methods, which utilize one of these methods alone, limit the capacity of NMT models for low-resource problems. In order to make full use of the advantages of existing methods and further improve the translation performance of low-resource languages, we propose a new method to perfectly integrate the back-translation method with mainstream transfer learning architectures, which can not only initialize the NMT model by transferring parameters of the pretrained models, but also generate synthetic parallel data by translating large-scale monolingual data of the target side to boost the fluency of translations. We conduct experiments to explore the effectiveness of the joint method by incorporating back-translation into the parent-child and the hierarchical transfer learning architecture. In addition, different preprocessing and training methods are explored to get better performance. Experimental results on Uygur-Chinese and Turkish-English translation demonstrate the superiority of the proposed method over the baselines that use single methods.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 179 ◽  
Author(s):  
Chongchong Yu ◽  
Yunbing Chen ◽  
Yueqiao Li ◽  
Meng Kang ◽  
Shixuan Xu ◽  
...  

To rescue and preserve an endangered language, this paper studied an end-to-end speech recognition model based on sample transfer learning for the low-resource Tujia language. From the perspective of the Tujia language international phonetic alphabet (IPA) label layer, using Chinese corpus as an extension of the Tujia language can effectively solve the problem of an insufficient corpus in the Tujia language, constructing a cross-language corpus and an IPA dictionary that is unified between the Chinese and Tujia languages. The convolutional neural network (CNN) and bi-directional long short-term memory (BiLSTM) network were used to extract the cross-language acoustic features and train shared hidden layer weights for the Tujia language and Chinese phonetic corpus. In addition, the automatic speech recognition function of the Tujia language was realized using the end-to-end method that consists of symmetric encoding and decoding. Furthermore, transfer learning was used to establish the model of the cross-language end-to-end Tujia language recognition system. The experimental results showed that the recognition error rate of the proposed model is 46.19%, which is 2.11% lower than the that of the model that only used the Tujia language data for training. Therefore, this approach is feasible and effective.


2019 ◽  
Author(s):  
Yohan Karunanayake ◽  
Uthayasanker Thayasivam ◽  
Surangika Ranathunga

Sign in / Sign up

Export Citation Format

Share Document