Probabilistic Fracture Mechanics Analysis of the Beltline of A PWR Nuclear Power Plant Pressure Vessel

Author(s):  
Md Sifatul Muktadir ◽  
Debashis Datta ◽  
Abdus Sattar Mollah
Author(s):  
Yu-Yu Shen ◽  
Hsoung-Wei Chou ◽  
Chin-Cheng Huang ◽  
Ru-Feng Liu

In recent years, the probabilistic fracture mechanics (PFM) approach has been widely applied to estimate the fracture risk of nuclear power plant piping systems. In the paper, the probabilistic fracture mechanics code, PRO-LOCA, developed by the Probabilistic Analysis as a Regulatory Tool for Risk Informed Decision Guidance (PARTRIDGE) project, is employed to practically evaluate the fracture probability of the recirculation piping system welds in a Taiwan domestic boiling water reactor (BWR) nuclear power plant. To begin with, the models based on the real situation of the recirculation piping welds are built. Then, the probabilities of through-wall cracking, leak with different rates, and rupture on the welds considering both in-service inspection and leak detection are analyzed. Meanwhile, the effects of probability of detection curves of ISI on the piping are simulated. Further, the efficiencies of performing the induction heating stress improvement and weld overlay are also studied and discussed. The present work could provide a reference of operation, inspection and maintenance for BWR plants in Taiwan.


Author(s):  
J. C. Kim ◽  
J. B. Choi ◽  
Y. H. Choi

Since early 1950’s fracture mechanics has brought significant impact on structural integrity assessment in a wide range of industries such as power, transportation, civil and petrochemical industries, especially in nuclear power plant industries. For the last two decades, significant efforts have been devoted in developing defect assessment procedures, from which various fitness-for-purpose or fitness-for-service codes have been developed. From another aspect, recent advances in IT (Information Technologies) bring rapid changes in various engineering fields. IT enables people to share information through network and thus provides concurrent working environment without limitations of working places. For this reason, a network system based on internet or intranet has been appeared in various fields of business. Evaluating the integrity of structures is one of the most critical issues in nuclear industry. In order to evaluate the integrity of structures, a complicated and collaborative procedure is required including regular in-service inspection, fracture mechanics analysis, etc. And thus, experts in different fields have to cooperate to resolve the integrity problem. In this paper, an integrity evaluation system on the basis of cooperative virtual reality environment for reactor pressure vessel which adapts IT into a structural integrity evaluation procedure for reactor pressure vessel is introduced. The proposed system uses Virtual Reality (VR) technique, Virtual Network Computing (VNC) and knowledge based programs. This system is able to support 3-dimensional virtual reality environment and to provide experts to cooperate by accessing related data through internet. The proposed system is expected to provide a more efficient integrity evaluation for reactor pressure vessel.


2020 ◽  
Vol 7 (3) ◽  
pp. 19-00573-19-00573
Author(s):  
Kai LU ◽  
Jinya KATSUYAMA ◽  
Yinsheng LI ◽  
Yuhei MIYAMOTO ◽  
Takatoshi HIROTA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document