A Two-stage Reactive Power Optimization Strategy for AC/DC Hybrid Distribution Network

Author(s):  
Chao Li ◽  
Shihong Miao ◽  
Di Zhang ◽  
Lixing Li
Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 534 ◽  
Author(s):  
Jun Xie ◽  
Chunxiang Liang ◽  
Yichen Xiao

The increasing penetration of distributed energy resources in distribution systems has brought a number of network management and operational challenges; reactive power variation has been identified as one of the dominant effects. Enormous growth in a variety of controllable devices that have complex control requirements are integrated in distribution networks. The operation modes of traditional centralized control are difficult to tackle these problems with central controller. When considering the non-linear multi-objective functions with discrete and continuous optimization variables, the proposed random gradient-free algorithm is employed to the optimal operation of controllable devices for reactive power optimization. This paper presents a distributed reactive power optimization algorithm that can obtain the global optimum solution based on random gradient-free algorithm for distribution network without requiring a central coordinator. By utilizing local measurements and local communications among capacitor banks and distributed generators (DGs), the proposed reactive power control strategy can realize the overall network voltage optimization and power loss minimization simultaneously. Simulation studies on the modified IEEE-69 bus distribution systems demonstrate the effectiveness and superiority of the proposed reactive power optimization strategy.


2021 ◽  
Vol 1914 (1) ◽  
pp. 012033
Author(s):  
Jinbo Huang ◽  
Jiangxiao Fang ◽  
Liexiang Hu ◽  
Bolong Shi ◽  
Suirong Li ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
pp. 71-78
Author(s):  
Hamza Yapıcı ◽  
Nurettin Çetinkaya

In this paper the minimization of power losses in a real distribution network have been described by solving reactive power optimization problem. The optimization has been performed and tested on Konya Eregli Distribution Network in Turkey, a section of Turkish electric distribution network managed by MEDAŞ (Meram Electricity Distribution Corporation). The network contains about 9 feeders, 1323 buses (including 0.4 kV, 15.8 kV and 31.5 kV buses) and 1311 transformers. This paper prefers a new Chaotic Firefly Algorithm (CFA) and Particle Swarm Optimization (PSO) for the power loss minimization in a real distribution network. The reactive power optimization problem is concluded with minimum active power losses by the optimal value of reactive power. The formulation contains detailed constraints including voltage limits and capacitor boundary. The simulation has been carried out with real data and results have been compared with Simulated Annealing (SA), standard Genetic Algorithm (SGA) and standard Firefly Algorithm (FA). The proposed method has been found the better results than the other algorithms.


Sign in / Sign up

Export Citation Format

Share Document