Design and optimization for the satellite Ku-band CP array antennas

Author(s):  
Lung-Fai Tuen ◽  
Ching-Lieh Li
Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2044
Author(s):  
Keyur K. Mistry ◽  
Pavlos I. Lazaridis ◽  
Zaharias D. Zaharis ◽  
Tian Hong Loh

This paper initially presents an overview of different miniaturization techniques used for size reduction of printed log-periodic dipole array (PLPDA) antennas, and then continues by presenting a design of a conventional PLPDA design that operates from 0.7–8 GHz and achieves a realized gain of around 5.5 dBi in most of its bandwidth. This antenna design is then used as a baseline model to implement a novel technique to extend the low-frequency response. This is completed by replacing the longest straight dipole with a triangular-shaped dipole and by optimizing the four longest dipoles of the antenna using the Trust Region Framework algorithm in CST. The improved antenna with extended low-frequency response operates from 0.4 GHz to 8 GHz with a slightly reduced gain at the lower frequencies.


2013 ◽  
Vol 5 (5) ◽  
pp. 629-636
Author(s):  
Wei Shi ◽  
Jun Zhou ◽  
Zuping Qian ◽  
Ya Shen

Detailed analysis of the polarization tracking modules for Ku band active phased array antennas is presented. The proposed transmitter (14.0–14.5 GHz) and receiver (12.25–12.75 GHz) modules are based on the low temperature co-fired ceramic (LTCC) technique, containing orthogonal dual channels with different phases controlled by phase shifters. The effect of amplitude and phase inconsistency between two channels on polarization tracking performance is analyzed. The validity of the analysis is verified by the measurements of the manufactured prototypes. The measured patterns of the active phased array antenna are given to illustrate the effects of the modules on polarization agility, which may be used for Ku band satellite antennas on mobile terminals.


2011 ◽  
Vol 3 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Sabine Dieter ◽  
Christoph Fischer ◽  
Wolfgang Menzel

In this paper, a method for design and optimization of folded reflect-array antennas is proposed based on particleswarm optimization (PSO). In addition to such a powerful optimization algorithm, two further requirements have to be fulfilled. The first one is a good and fast algorithm for the exact prognosis of the far-field radiation diagram, resulting from a specific element configuration on the reflector. Additionally, a good choice of the fitness function for the evaluation of the resulting radiation diagrams is necessary. In both, reflect-array-related aspects such as phase truncation, reflection losses, and cell discontinuities have to be considered. Antenna optimization based on this technique is presented in this paper at the example of two 77 GHz folded reflect-array antennas. The efficiency of this approach is demonstrated with these examples, and the results are verified by measurement, showing an excellent agreement with the specifications of the diagram masks. The implemented tool, including a realistic antenna diagram preview, allows the investigation of the design parameters’ influence on the antenna performance, such as illumination amplitude, high substrate losses, and phase truncation.


Sign in / Sign up

Export Citation Format

Share Document