scholarly journals An Extremum Seeking Estimator Design and Its Application to Monitoring Unbalanced Mass Dynamics

Author(s):  
Melih Cakmakci ◽  
Stefan Ristevski
Author(s):  
Yuheng Wu ◽  
Mohammad Hazzaz Mahmud ◽  
Radha Sree Krishna Moorthy ◽  
Madhu Chinthavali ◽  
Yue Zhao

2020 ◽  
Vol 53 (2) ◽  
pp. 5423-5428
Author(s):  
Daisuke Tsubakino ◽  
Tiago Roux Oliveira ◽  
Miroslav Krstic
Keyword(s):  

2020 ◽  
Vol 53 (2) ◽  
pp. 1614-1620
Author(s):  
Fabiana Federica Ferro ◽  
Michele Lionello ◽  
Mirco Rampazzo ◽  
Alessandro Beghi ◽  
Martin Guay

2021 ◽  
pp. 107754632110233
Author(s):  
Wei Feng ◽  
Kun Zhang ◽  
Baoguo Liu ◽  
Weifang Sun ◽  
Sijie Cai

The air-gap eccentricity will produce unbalanced magnetic pull and cause vibrations and noises in a motor. In this study, the dynamic behavior of a synchronous motorized spindle with inclined eccentricity is investigated. A semi-analytical method is proposed to model the unbalanced magnetic pull and the electromagnetic torque of a rotor with inclined eccentricity, and the semi-analytical method is verified by the finite element method. The dynamic model of a spindle-bearing system is built by taking the centrifugal force and gyroscopic effects into account. Then, the vibration response of dynamic displacement eccentricity, inclined eccentricity including displacement eccentricity and angle eccentricity, rotating speed, and unbalanced mass eccentricity in both time domain and frequency domain are simulated and analyzed. The results show that the eccentricities can lead to fluctuations in amplitudes of the dynamic displacement response and the angle response. The frequency components of the dynamic responses are the combination of rotating frequency, VC frequency, and power frequency. It is indicated that the coupling interactions of bearing forces, unbalanced mass force, and unbalanced magnetic pull have an obvious effect on the spindle-bearing system.


Sign in / Sign up

Export Citation Format

Share Document