Enhanced Smith Predictor based Active Disturbance Rejection Control for Tracking and Rejecting Periodic Signals on Time Delay Systems*

Author(s):  
Vickneswaran Artheec Kumar ◽  
Don Bombuwela ◽  
Zhenwei Cao ◽  
Xianming Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guangda Chen ◽  
Dejun Liu ◽  
Yongxin Mu ◽  
Jinfei Xu ◽  
Yanming Cheng

The control strategy research of the time-delay system is a focused issue in the control field. In order to furthermore improve the performance of the first-order time-delay inertial system, firstly, a new Smith predictor structure is proposed, which solves the constraint that the conventional Smith predictor needs to match the actual object model. Secondly, the performance and parameter function of the new Smith predictor are discussed in theory to provide the basis for parameter tuning. Finally, a new Smith predictor combined with linear active disturbance rejection control (LADRC) is proposed to solve the problem that the two input signals of the linear extended state observer (LESO) are not synchronized on the time scale, and the stability of the new Smith + LADRC time-delay control system is proved theoretically for known and unknown controlled complex objects. Simulation analysis is conducted to verify the robustness of the proposed strategy under the condition of the different parameters. The results indicate that the proposed strategy has better performance than the conventional method in response speed, overshoot, adjustment time, and stability.


Sign in / Sign up

Export Citation Format

Share Document