Integrated Compressed Sensing and YOLOv4 for Application in Image-storage and Object-recognition of Dashboard Camera

Author(s):  
Jim-Wei Wu ◽  
Cheng-Chia Wu ◽  
Wen-Shan Cen ◽  
Shao-An Chao ◽  
Jui-Tse Weng
Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7257
Author(s):  
Zhen Wang ◽  
Shijie Gao ◽  
Lei Sheng

The Compressed Sensing (CS) camera can compress images in real time without consuming computing resources. Applying CS theory in the Laser Communication (LC) system can minimize the assumed transmission bandwidth (normally from a satellite to a ground station) and minimize the storage costs of beacon light-spot images; this can save more than ten times the typical bandwidth or storage space. However, the CS compressive process affects the light-spot tracking and key parameters in the images. In this study, we quantitatively explored the feasibility of the CS technique to capture light-spots in LC systems. We redesigned the measurement matrix to adapt to the requirement of light-tracking. We established a succinct structured deep network, the Compressed Sensing Denoising Center Net (CSD-Center Net) for denoising tracking computation from compressed image information. A series of simulations was made to test the performance of information preservation in beacon light spot image storage. With the consideration of CS ratio and application scenarios, coupled with CSD-Center Net and standard centroid, CS can achieve the tracking function well. The information preserved in compressed information correlates with the CS ratio; higher CS ratio can preserve more details. In fact, when the data rate is up than 10%, the accuracy could meet the requirements what we need in most application scenarios.


2004 ◽  
Vol 11 (03) ◽  
pp. 277-289 ◽  
Author(s):  
Chu Kiong Loo ◽  
Mitja Peruš ◽  
Horst Bischof

A quantum associative memory, much more natural than those of “quantum computers”, is presented. Neural-net-like processing with real-valued variables is transformed into processing with quantum waves. Successful computer simulations of image storage and retrieval are reported. Our Hopfield-like algorithm allows quantum implementation with holographic procedure using present-day quantum-optics techniques. This brings many advantages over classical Hopfield neural nets and quantum computers with logic gates.


GeroPsych ◽  
2010 ◽  
Vol 23 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Adrian Schwaninger ◽  
Diana Hardmeier ◽  
Judith Riegelnig ◽  
Mike Martin

In recent years, research on cognitive aging increasingly has focused on the cognitive development across middle adulthood. However, little is still known about the long-term effects of intensive job-specific training of fluid intellectual abilities. In this study we examined the effects of age- and job-specific practice of cognitive abilities on detection performance in airport security x-ray screening. In Experiment 1 (N = 308; 24–65 years), we examined performance in the X-ray Object Recognition Test (ORT), a speeded visual object recognition task in which participants have to find dangerous items in x-ray images of passenger bags; and in Experiment 2 (N = 155; 20–61 years) in an on-the-job object recognition test frequently used in baggage screening. Results from both experiments show high performance in older adults and significant negative age correlations that cannot be overcome by more years of job-specific experience. We discuss the implications of our findings for theories of lifespan cognitive development and training concepts.


2007 ◽  
Author(s):  
K. Suzanne Scherf ◽  
Marlene Behrmann ◽  
Kate Humphreys ◽  
Beatriz Luna

Sign in / Sign up

Export Citation Format

Share Document