Variable Droop Control for Wind Farm to Participate the System Frequency Regulation

Author(s):  
Tianhu Wan ◽  
Hua Li ◽  
Chen Wang ◽  
Peng Kou
2014 ◽  
Vol 1070-1072 ◽  
pp. 319-326
Author(s):  
Zhi Xu ◽  
Hong Tao Wang ◽  
Cheng Ming He

For the rotor speed of variable speed wind turbine (VSWT) is decoupled from system frequency, the system equivalent rotary inertia and primary frequency control ability are decreased with wind power penetration growing continuously. To solve the problems, VSWT with additional frequency control was studied. The dynamic characteristics of input and output power of VSWT during participating in system frequency regulation are analyzed. The relationships between the active power increments and the duration of VSWT participating frequency control are quantified. A coordination frequency control strategy base on time sequence control is proposed. According to the control strategy, the VSWTs can participate in frequency regulation depending on the coordination of wind speed, power increments and duration. The simulation results demonstrate the effectiveness of the proposed control strategy, which can make full use of the frequency regulation ability of VSWTs as well as minimize the negative effects on system frequency.


2013 ◽  
Vol 380-384 ◽  
pp. 3434-3437
Author(s):  
Guan Qi Liu ◽  
Ting Hu ◽  
Jin Jiao Lin

This paper investigates a frequency coordination control strategy for islanded microgrid. The dynamic process is divided into three levels including the dynamic support, droop control and zero error regulation. The control strategy is classified into primary and secondary frequency regulation. Simulation is performed on DIgSILENT and the results verify the effectiveness of the proposed control strategy and improve the performance of system frequency regulation.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7980
Author(s):  
Yien Xu ◽  
Pei Chen ◽  
Xinsong Zhang ◽  
Dejian Yang

Doubly-fed induction generators (DFIGs) participate in the system frequency regulation using a fixed-coefficient droop control scheme. Nevertheless, the frequency-supporting capability of this control scheme with fixed gain is limited for different disturbances. This paper suggests an improved droop control scheme for a DFIG that can both alleviate the frequency nadir and maximum rate of change of frequency (ROCOF) during the frequency regulation. To achieve this, an adaptive droop control coefficient based on the ROCOF is suggested. The proposed droop control coefficient is a linear function of the ROCOF. Therefore, the proposed scheme can adjust the control coefficient according to the varying ROCOF. Simulation results clearly demonstrate that the proposed droop control scheme shows better effectiveness in improving the maximum ROCOF and frequency nadir under various sizes of disturbance, even in a varying wind speed.


Sign in / Sign up

Export Citation Format

Share Document