Testing the Quality of Magnetic Gradient Fields for Studying Self-Diffusion Processes in Biological Specimens by Magnetic Resonance Methods

Author(s):  
Eva Gescheidtova ◽  
Radek Kubasek ◽  
Karel Bartusek
1985 ◽  
Vol 1 (3) ◽  
pp. 647-665 ◽  
Author(s):  
Bertil R. R. Persson ◽  
Freddy Ståhlberg

In a standard whole-body NMR-scanning machine, the static magnetic field is generated by an electric current driven through large solenoid coils. Dynamic magnetic gradient fields are generated by electric current pulses in coils located at various orientations, thus producing magnetic gradients inx, y, andzdirections. The Rf (radiofrequency) radiation is transmitted through a specially shaped coil which also serves as an antenna receiving the NMR signals.


2002 ◽  
Vol 742 ◽  
Author(s):  
D. I. Cherednichenko ◽  
R. V. Drachev ◽  
I. I. Khlebnikov ◽  
X. Deng ◽  
T. S. Sudarshan

ABSTRACTNumerical simulations of the thermal stress distribution in a SiC boule 2” in diameter and 1” long grown by conventional PVT technique were performed based on the temperature field distribution in a resistively heated growth reactor that was simulated using the GAMBIT-2.0.4/FIDAP-8.6.2 software package. Analysis of the simulation results revealed the existence of a thermal stress, which was excessively nonuniform in distribution and whose magnitude exceeded the value of the critical resolved shear stress of 1.0 MPa by a factor of 2. The high stress initiated plastic deformation and the high temperature provoked the intense self-diffusion processes. The combination of these factors alters the mechanism of plastic deformation, significantly affecting the structural quality of the growing crystal. The influence of self-diffusion processes initiating the formation of interstitial atoms and vacancies; stacking fault formation as a result of the nonconservative motion of the basal plane dislocations; and micropipe formation from the dislocation groups piled up at silicon and carbon second phase inclusions are also discussed.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Martina Correa Londono ◽  
Nino Trussardi ◽  
Verena C. Obmann ◽  
Davide Piccini ◽  
Michael Ith ◽  
...  

Abstract Background The native balanced steady state with free precession (bSSFP) magnetic resonance angiography (MRA) technique has been shown to provide high diagnostic image quality for thoracic aortic disease. This study compares a 3D radial respiratory self-navigated native MRA (native-SN-MRA) based on a bSSFP sequence with conventional Cartesian, 3D, contrast-enhanced MRA (CE-MRA) with navigator-gated respiration control for image quality of the entire thoracic aorta. Methods Thirty-one aortic native-SN-MRA were compared retrospectively (63.9 ± 10.3 years) to 61 CE-MRA (63.1 ± 11.7 years) serving as a reference standard. Image quality was evaluated at the aortic root/ascending aorta, aortic arch and descending aorta. Scan time was recorded. In 10 patients with both MRA sequences, aortic pathologies were evaluated and normal and pathologic aortic diameters were measured. The influence of artifacts on image quality was analyzed. Results Compared to the overall image quality of CE-MRA, the overall image quality of native-SN-MRA was superior for all segments analyzed (aortic root/ascending, p < 0.001; arch, p < 0.001, and descending, p = 0.005). Regarding artifacts, the image quality of native-SN-MRA remained superior at the aortic root/ascending aorta and aortic arch before and after correction for confounders of surgical material (i.e., susceptibility-related artifacts) (p = 0.008 both) suggesting a benefit in terms of motion artifacts. Native-SN-MRA showed a trend towards superior intraindividual image quality, but without statistical significance. Intraindividually, the sensitivity and specificity for the detection of aortic disease were 100% for native-SN-MRA. Aortic diameters did not show a significant difference (p = 0.899). The scan time of the native-SN-MRA was significantly reduced, with a mean of 05:56 ± 01:32 min vs. 08:51 ± 02:57 min in the CE-MRA (p < 0.001). Conclusions Superior image quality of the entire thoracic aorta, also regarding artifacts, can be achieved with native-SN-MRA, especially in motion prone segments, in addition to a shorter acquisition time.


1999 ◽  
Vol 568 ◽  
Author(s):  
Arthur F.W. Willoughby ◽  
Janet M. Bonar ◽  
Andrew D.N. Paine

ABSTRACTInterest in diffusion processes in SiGe alloys arises from their potential in HBT's, HFET's, and optoelectronics devices, where migration over distances as small as a few nanometres can be significant. Successful modelling of these processes requires a much improved understanding of the mechanisms of self- and dopant diffusion in the alloy, although recent progress has been made. It is the purpose of this review to set this in the context of diffusion processes in elemental silicon and germanium, and to identify how this can help to elucidate behaviour in the alloy. Firstly, self diffusion processes are reviewed, from general agreement that self-diffusion in germanium is dominated by neutral and acceptor vacancies, to the position in silicon which is still uncertain. Germanium diffusion in silicon, however, appears to be via both vacancy and interstitial processes, and in the bulk alloy there is evidence for a change in dominant mechanism at around 35 percent germanium. Next, a review of dopant diffusion begins with Sb, which appears to diffuse in germanium by a mechanism similar to self-diffusion, and in silicon via monovacancies also, from marker layer evidence. In SiGe, the effects of composition and strain in epitaxial layers on Si substrates are also consistent with diffusion via vacancies, but questions still remain on the role of charged defects. The use of Sb to monitor vacancy effects such as grown-in defects by low temperature MBE, are discussed. Lastly, progress in assessing the role of vacancies and interstitials in the diffusion of boron is reviewed, which is dominated by interstitials in silicon-rich alloys, but appears to change to domination by vacancies at around 40 percent germanium, although studies in pure germanium are greatly needed.


Sign in / Sign up

Export Citation Format

Share Document