temperature field distribution
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 47)

H-INDEX

7
(FIVE YEARS 2)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 97
Author(s):  
Yongchun Yan ◽  
Lixin Zhang ◽  
Xiao Ma ◽  
Huan Wang ◽  
Wendong Wang ◽  
...  

The distribution of heating gun ends plays a decisive role in the sidewall properties of finished rotomolded products. To obtain the optimal distribution of the end face of a rotational molding heating gun, the temperature response of the end-face mold under heating gun heating was investigated, and an analysis method based on numerical simulation is proposed. The FDS (fire dynamics simulator) was used to construct a heating model of the heating gun, simulate and obtain a heatmap of the temperature field distribution of a heating gun of Φ30–70 mm, and determine the optimal diameter and heating distance of the heating gun. ANSYS was used to establish the thermal response model of the heat-affected mold, which was combined with the mold structure and thermophysical properties of steel. A temperature field distribution on the inner wall surface of Φ30, Φ50, and Φ70 mm heating guns when heating at each diameter of the end face was obtained and the distribution position of the end face of each diameter heating gun was determined. ANSYS was used to establish the thermal response model of the end-face mold and obtain the temperature field distribution of the inner wall surface of the end-face mold. The size of the heat-affected area of each diameter heating gun was combined, the end-face heating gun distribution was optimized, and the optimal heating gun end-face distribution was obtained. An experimental platform was built, and a validation experiment was set up. Through the analysis and processing of the data of three experiments, the temperature variation curve of each diameter on the inner surface of the end-face mold was obtained. We compare and analyze the simulation and experimental results to determine the feasibility of the FDS + ANSYS method and the correctness and accuracy of the simulation model and the results.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6329
Author(s):  
Ewelina Kubacka ◽  
Piotr Ostrowski

This note deals with the heat conduction issue in biperiodic composites made of two different materials. To consider such a nonuniform structure, the equations describing the behavior of the composite under thermal (Robin) boundary conditions were averaged by using tolerance modelling. In this note, the process of creating an algorithm that uses the finite difference method to deal with averaged model equations is shown. This algorithm can be used to solve these equations and find out the temperature field distribution of a biperiodic composite.


2021 ◽  
Vol 297 (3) ◽  
pp. 208-215
Author(s):  
JULIA SHTEFURA ◽  
◽  
KOSTIANTYN SHEVCHENKO ◽  
OLEH KOZYR ◽  
OLEKSII STATSENKO ◽  
...  

Early determination of the thermal lesion degree in case of scald accelerates the treatment process and increases its effectiveness. The thermal lesion degree can be evaluated by determining the temperature difference between healthy and injured areas of biological tissue. For this purpose, a model of biological tissue in the form of a multilayer structure can be used. Heat exchange processes in such a structure are described by a generalized thermal model. Such structure contains conditionally flat heat sources located in each layer, which have the form of a developed network of blood vessels. The considered model of biological tissue quite accurately describes the heat exchange processes in body tissues. The article considers heat exchange processes that take place in biological tissue and a number of assumptions that should be used to mathematically describe these processes were identified. During the analysis of heat transfer process, the equations of temperature distribution in the tissue layers and the boundary conditions that describe the thermal interaction of the model with the environment are determined. As a result, the model of the stationary thermal regime of a biological tissue fragment in the form of a generalized thermal model and a mathematical model of the temperature field distribution in this fragment is obtained. This model is determined by many parameters, which are divided into 3 groups: thermophysical parameters; structural and topological parameters; parameters of the blood vascular system. Models of the particular fragment thermal regime are unequivocally determined by a combination of these parameters. For the analysis of temperature in any point of biological tissue modelled part mathematical model of temperature field distribution in stationary mode was developed. This model allows reasonable approach to the thermal lesion degree evaluation on the basis of the surface temperature difference between healthy and injured areas of tissue.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jielong Sun ◽  
Jianxi Ren

This study investigated the temperature field distribution of a freezing inclined shaft. Thus, a three-dimensional physical simulation test system was developed, and the system consists of six parts, which are simulation box and shaft model, loading system, freezing system, external environment simulation system, and data acquisition system. From the results of physical and mechanical property test of artificially frozen sand, in the range of 25°C to -20°C, the heat capacity of sand decreases first, then increases, decreases, and finally tends to be stable; the thermal conductivity of sand gradually increases and finally becomes stable; and the cohesion, internal friction angle, uniaxial compressive strength, and elastic modulus of artificially frozen sand all increase as the freezing temperature decreases. The three-dimensional physical simulation test and field measurement showed that the distance from the freezing pipe is the main factor affecting freezing wall temperature, and the closer to the freezing pipe, the faster the cooling rates. Comparison of theoretical calculation results and field measurement results shows that the calculation formula of freezing wall temperature with time of the inclined shaft can reflect the general law of freezing wall temperature cooling. Therefore, the 3D physical simulation test system is reliable and the test method is feasible.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wangqing Wen ◽  
Shiwei Li ◽  
Aiguo Yan ◽  
Jiahua Zeng

AbstractTo analyze the time-varying temperature field distribution pattern of ballastless track steel-concrete composite box girders for a high-speed railway at ambient temperature, a numerical model for analyzing the time-varying temperature field of steel-concrete composite box girders was established based on the long-term monitoring data for the internal and external environments of the main girder of the Ganjiang Bridge on the Nanchang-Ganzhou high-speed railway. The influence of factors such as the deck pavement and the ambient wind speed on the time-varying temperature field of the steel-concrete composite box girders were considered. The results showed that there was a significant difference in the vertical temperature gradient patterns on sections at the side web and at the middle web at the same moment in time due to the hindering effect of the track board on the heat exchange between the ambient temperature and the main girder. Increasing the wind speed accelerated the rate of heat exchange between the main girder surface and the environment. In particular, when the internal temperature of the girder was higher than the ambient temperature, the higher the wind speed was, the larger the temperature gradient was. This study lays a foundation for accurate analysis of the structural response of ballastless track steel-concrete composite girder bridges at ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document