Investigation of the Influence of Electromagnetic Interference from Generator Power Lines on the Equipment in the Engine Nacelle of an Aircraft

Author(s):  
Alexander V. Kirsha ◽  
Rustam R. Gaynutdinov ◽  
Sergey F. Chermoshentsev
Electricity ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 316-329
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

This paper presents a numerical study on the reduction in the voltage and current induced on a 13.5 km buried metallic pipeline by an overhead power line. The mitigation effectiveness of different configurations and cross-section shapes of screening conductors is computed by means of a methodology that combines a 2D Finite Element Analysis with circuital analysis. A 35.72% reduction of the maximum induced voltage is obtained when 4 cylindrical steel screening conductors with 8 mm radius are buried 0.25m below the soil surface, along the pipeline path. The maximum induced pipeline current is reduced by 26.98%. A parametric study is also performed, to assess the influence of the per-unit-length admittance to earth of the screening conductors on the mitigation efficacy. The results show that screening conductors may help in reducing the inductive coupling between overhead power lines and buried metallic pipelines, and that the assumption of perfectly insulated screening conductors leads to an underestimation of the produced mitigation effect.


ESC CardioMed ◽  
2018 ◽  
pp. 2005-2011
Author(s):  
Jan Steffel

In spite of the development of specific shielding of electronic devices as well as the current-day preference for bipolar sensing, electromagnetic interference (EMI) may still occur with certain pacemakers in certain settings, which in turn may lead to false inhibition of ventricular stimulation with potentially fatal consequences. The most important sources of clinically relevant EMI include medical diagnostics and therapy (e.g. magnetic resonance imaging, radiofrequency ablation, cardioversion/defibrillation, and electrocautery), the working environment (including high-power lines, combustion/degaussing/welding equipment, and others), as well as sources from daily life (such as wireless mobile phones, metal detectors, household appliances such as induction furnaces, electronic article surveillance devices, and others). To what extent, and whether or not at all, any given source of interference leads to EMI depends on several factors including the duration of interference, the field strength, and the frequency spectrum of the source. In addition, lead properties and device programming are important determinants. Awareness, recognition, and avoidance of EMI sources is of paramount importance, particularly in high-risk pacemaker-dependent individuals. The importance of proper education of patients as well as healthcare providers cannot be overemphasized.


Author(s):  
Alexandru Muresan ◽  
Theofilos A. Papadopoulos ◽  
Levente Czumbil ◽  
Andreas I. Chrysochos ◽  
Timea Farkas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document