Protecting Distance of Electromagnetic Interference of UHV Power Lines to Radar Stations

Author(s):  
Tang Bo ◽  
Yang Jiawei ◽  
Huang Li ◽  
Hao Bin
Electricity ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 316-329
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

This paper presents a numerical study on the reduction in the voltage and current induced on a 13.5 km buried metallic pipeline by an overhead power line. The mitigation effectiveness of different configurations and cross-section shapes of screening conductors is computed by means of a methodology that combines a 2D Finite Element Analysis with circuital analysis. A 35.72% reduction of the maximum induced voltage is obtained when 4 cylindrical steel screening conductors with 8 mm radius are buried 0.25m below the soil surface, along the pipeline path. The maximum induced pipeline current is reduced by 26.98%. A parametric study is also performed, to assess the influence of the per-unit-length admittance to earth of the screening conductors on the mitigation efficacy. The results show that screening conductors may help in reducing the inductive coupling between overhead power lines and buried metallic pipelines, and that the assumption of perfectly insulated screening conductors leads to an underestimation of the produced mitigation effect.


ESC CardioMed ◽  
2018 ◽  
pp. 2005-2011
Author(s):  
Jan Steffel

In spite of the development of specific shielding of electronic devices as well as the current-day preference for bipolar sensing, electromagnetic interference (EMI) may still occur with certain pacemakers in certain settings, which in turn may lead to false inhibition of ventricular stimulation with potentially fatal consequences. The most important sources of clinically relevant EMI include medical diagnostics and therapy (e.g. magnetic resonance imaging, radiofrequency ablation, cardioversion/defibrillation, and electrocautery), the working environment (including high-power lines, combustion/degaussing/welding equipment, and others), as well as sources from daily life (such as wireless mobile phones, metal detectors, household appliances such as induction furnaces, electronic article surveillance devices, and others). To what extent, and whether or not at all, any given source of interference leads to EMI depends on several factors including the duration of interference, the field strength, and the frequency spectrum of the source. In addition, lead properties and device programming are important determinants. Awareness, recognition, and avoidance of EMI sources is of paramount importance, particularly in high-risk pacemaker-dependent individuals. The importance of proper education of patients as well as healthcare providers cannot be overemphasized.


Author(s):  
Alexandru Muresan ◽  
Theofilos A. Papadopoulos ◽  
Levente Czumbil ◽  
Andreas I. Chrysochos ◽  
Timea Farkas ◽  
...  

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1136
Author(s):  
Azhan Fikry ◽  
Siow Chun Lim ◽  
Mohd Zainal Abidin Ab Kadir

Background: There has been rising concern amongst the public regarding their home's proximity to high tension power transmission lines. The primary cause of fear is the impact of the electromagnetic interference (EMI) radiation on the nearby occupants' health. Despite the presence of national permissible limits of EMI radiation, there is still lack of information with regards to the EMI radiation of the types of power lines configuration in Malaysia. Methods: The electric and magnetic fields of several selected power transmission lines were simulated using the EMFACDC software program from the recommendation ITU-T K.90. Five types of power transmission lines available in Malaysia are considered. Results: It was found that the simulated electric and magnetic field levels at all the power lines' right of way (ROW) boundary complies with the prescribed exposure limit. However, the electromagnetic fields (EMF) level increases significantly as the separation distance is reduced from 30m. For a more conservative approach, the ROW can be set at 30m across all transmission voltage level and corridor area condition. Conclusion: It can be concluded that Malaysia's power transmission lines are within the prescribed exposure limits. To further minimize the electric and magnetic field level, it is recommended that the residential building should be built at least 30 meters away from the power transmission lines, especially for the 275kV double circuit, 275/132kV quadruple circuit, and 500kV double circuit lines.


Sign in / Sign up

Export Citation Format

Share Document