A quadrature-modulation EPWM transmitter that uses sine wave carriers for I and Q channel with a 90° hybrid

Author(s):  
Tomoaki Morita ◽  
Ryo Sakai ◽  
Yohtaro Umeda ◽  
Yusuke Kozawa
2009 ◽  
Author(s):  
Navin Viswanathan ◽  
James S. Magnuson ◽  
Carol A. Fowler
Keyword(s):  

Author(s):  
Enyu Ma ◽  
Hui Zhao ◽  
Shuo Chen ◽  
Shuai Wang ◽  
Xin Huo ◽  
...  
Keyword(s):  

2012 ◽  
Vol 37 (4) ◽  
pp. 447-454
Author(s):  
James W. Beauchamp

Abstract Source/filter models have frequently been used to model sound production of the vocal apparatus and musical instruments. Beginning in 1968, in an effort to measure the transfer function (i.e., transmission response or filter characteristic) of a trombone while being played by expert musicians, sound pressure signals from the mouthpiece and the trombone bell output were recorded in an anechoic room and then subjected to harmonic spectrum analysis. Output/input ratios of the signals’ harmonic amplitudes plotted vs. harmonic frequency then became points on the trombone’s transfer function. The first such recordings were made on analog 1/4 inch stereo magnetic tape. In 2000 digital recordings of trombone mouthpiece and anechoic output signals were made that provide a more accurate measurement of the trombone filter characteristic. Results show that the filter is a high-pass type with a cutoff frequency around 1000 Hz. Whereas the characteristic below cutoff is quite stable, above cutoff it is extremely variable, depending on level. In addition, measurements made using a swept-sine-wave system in 1972 verified the high-pass behavior, but they also showed a series of resonances whose minima correspond to the harmonic frequencies which occur under performance conditions. For frequencies below cutoff the two types of measurements corresponded well, but above cutoff there was a considerable difference. The general effect is that output harmonics above cutoff are greater than would be expected from linear filter theory, and this effect becomes stronger as input pressure increases. In the 1990s and early 2000s this nonlinear effect was verified by theory and measurements which showed that nonlinear propagation takes place in the trombone, causing a wave steepening effect at high amplitudes, thus increasing the relative strengths of the upper harmonics.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-6
Author(s):  
Raji A. Abimbola

In recent years, Nigeria’s power generation output from all the available energy sources such as coal, natural gas, and water, is far from the expected number required to meet the energy demand of her teeming populace. This culminates in long hours of power outages frequently experienced in many parts of the country. However, there appears to be no end in sight to the problem. Alternatively, few citizens who can afford generator have wittingly resulted to the use of this device to supply power. Generator set has unavoidable disadvantages of high maintenance or running cost, noise pollution, and release of dangerous gases that pose danger to human lives. Evidently, that solution is risky and inadequate. Power inverter is an alternative and better means of generating electricity with little or no maintenance cost, environment or eco- friendly and poses no risk to human health. It is in that connection that we develop in this work 2KVA sine wave inversion system which produces sinusoidal A.C. signal required in homes for lightning and powering electronic gadgets like television, radio, refrigerator, Air conditioner etc. It is an improvement over square wave and modified sine wave inversion systems that generate digital approximations of A.C. signal. An interesting but new addition is the use of LCD display, interfaced with PIC16F688 microcontroller for showing the design specifications of the inverter.


Circulation ◽  
1996 ◽  
Vol 94 (10) ◽  
pp. 2507-2514 ◽  
Author(s):  
Gust H. Bardy ◽  
Francis E. Marchlinski ◽  
Arjun D. Sharma ◽  
Seth J. Worley ◽  
Richard M. Luceri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document