Research on Operational Capability of Fuel Elements Cycling System in Pebble Bed Reactor

Author(s):  
Lixia Yang ◽  
Guilin Guo ◽  
Dong Du ◽  
Li Wang ◽  
Baohua Chang
2013 ◽  
Vol 05 (04) ◽  
pp. 510-516
Author(s):  
Hongbing Liu ◽  
Peng Shen ◽  
Dong Du ◽  
Xin Wang ◽  
Haiquan Zhang

1975 ◽  
Vol 34 (1) ◽  
pp. 93-108 ◽  
Author(s):  
L. Wolf ◽  
G. Ballensiefen ◽  
W. Fröhling

1969 ◽  
Vol 91 (2) ◽  
pp. 390-394
Author(s):  
D. Bedenig ◽  
C. B. v. d. Decken ◽  
W. Rausch

For several years gas-cooled high temperature reactors have been developed in Germany, the main feature of which are their pebble-type fuel elements. The pebble bed is in the state of a continuous circulation process which is the reason for a series of nuclear and technical advantages. To make use of these advantages, comprehensive experimental studies on the flow behavior of a pebble bed were carried out. First, experimental equipment and the most successful method of measurement are described. Then typical results of parameter studies are reported as well as a theoretical model to calculate the pebble bed flow behavior. At last typical functions describing the flow behavior in the core of the THTR 300 MWe Prototype Reactor are reported.


Author(s):  
Walter Jaeger ◽  
H. J. Hamel ◽  
Heinz Termuehlen

The gas-cooled reactor design with spherical fuel elements, referred to as high-temperature gas-cooled reactors (HTGR or HTR reactors) or pebble bed reactors has been already suggested by Farrington Daniels in the late 1940s; also referred to as Daniels’ pile reactor design. Under Rudolf Schulten the first pebble bed reactor, the 46MWth AVR Juelich reactor (Atom Versuchs-Reactor Jülich) was built in the late 1960s. It was in operation for 22 years and extensive testing confirmed its inherent safety.


Energy ◽  
2015 ◽  
Vol 79 ◽  
pp. 33-39 ◽  
Author(s):  
Hongbing Liu ◽  
Dong Du ◽  
Zandong Han ◽  
Yirong Zou ◽  
Jiluan Pan

Author(s):  
Tao Chen ◽  
Jie Wang ◽  
Wei Peng ◽  
Xiaokai Sun

The deposition of graphite dust produced by the collision between graphite components would cause the security issue in HTGR and need to be analyzed. In this paper, a numerical calculation about the graphite dust’s deposition in the pebble bed reactor core of high-temperature gas cooled reactor was conducted. The three-dimensional steady-state solver was employed for the calculation of flow field and temperature field during simulation. The discrete phase model (DPM) and Lagrange method were applied for the simulation of graphite dust. Effects of parameters such as particle diameter, pebble bed layer numbers, inlet velocity and surface temperature of fuel elements on deposition of graphite dust are analyzed. The results indicated that a majority of particles deposit on the first layer pebble because of first layer’s shielding effect on nether layers. Moreover, deposition efficiency of graphite dust increases with increasing particles diameter and increasing inlet velocity due to greater motion inertia of particles. Compared with fewer layers, more layers structure would lead to larger deposition efficiency because of more opportunities for collision between graphite dust and pebbles, but the difference is not obvious. In addition, the higher surface temperature of fuel elements would cause lower deposition efficiency due to larger thermophoretic force which would drive particles to deviate from pebbles.


Sign in / Sign up

Export Citation Format

Share Document