A novel adaptive loss of excitation protection criterion based on steady-state stability limit

Author(s):  
Ya-dong Liu ◽  
Zeng-ping Wang ◽  
Tao Zheng ◽  
Li-ming Tu ◽  
Yi Su ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kaiyuan Hou ◽  
Zeyu Li ◽  
Lei Chen ◽  
Deming Xia ◽  
Qun Li ◽  
...  

Coupled with the power system through power-electronic interfaces, renewable energies including wind power and photovoltaic can control the power quickly and flexibly. In the steady-state stability analysis, by neglecting the fast dynamics of power-electronic interfaces, the renewable energy power is simplified to a static power injection model and can be described as an algebraic equation in the dynamic process. Based on this simplified model, the steady-state stability of sending-end system with mixed synchronous generator and power-electronic-interfaced renewable energy is studied. By proposing a triangular transformation model based on the classical model of power system, the steady-state stability analysis becomes feasible. The mechanism of steady-state stability is revealed, and the influence of renewable energy on the steady-state stability limit is quantitatively investigated. When the renewable energy power increases, the steady-state stability limit of the sending-end system first increases and then decreases. Reducing the power output of synchronous generator can change for a higher integration limit of renewable energy. Simulation results validate the conclusion.


2014 ◽  
Vol 494-495 ◽  
pp. 1795-1800
Author(s):  
Hui Ping Zheng ◽  
Yu Long Yang ◽  
Shu Yong Song ◽  
Xin Yuan Liu ◽  
Min Xue ◽  
...  

In this paper, the problem of the excessive generator tripping value of security and stability control after occurrence of the N-2 fault in the Shentou-Yantong transmission line of Shanxi DaTong Regional grid is studied. And the principle of security and stability control measures based on equal area criterion is analyzed. The reason leading to excessive generator-tripping value of security and stability control after the occurrence of the N-2 fault in Shentou-Yantong region is figured out, and it is that the steady-state stability limit of transmission section decreases and the accelerator power cannot be released. Finally, the results of theoretical analysis are verified by simulations. The simulation results indicate that too large generator-tripping value of security and stability control is mainly caused by decrease of the steady-state stability limit of the transmission section after occurrence of the fault in Datong. The conclusions in the paper have referential significance for the study on similar power concentrated send-out systems.


1994 ◽  
Vol 31 (4) ◽  
pp. 357-361
Author(s):  
C. S. Indulkar

An exercise for teaching transient stability In this paper, the transient stability limits of a synchronous machine for various initial loadings have been determined in terms of its steady-state stability limit.


Author(s):  
Rusilawati

The indicator of the power system operation stability can be seen from the power balance between the load demand and the generator output power. The Single Machine to Infinite Bus (SMIB) system that can actually represent the operation of a single machine system in a multimachine system can be used to analyze each generator unit stability. This paper present a fairly simple method to determine the generator steady state stability limit on the Jawa Bali 500 kV system using an SMIB system approach consider the load configuration changes in the system. The Radial Basis Function Neural Network (RBFNN) is applied to simplify the determination of the generator steady state stability limit that changes every time a load configuration changes. The simulation results carried out on the Java Bali system 500 kV 29 bus 10 generators can be seen that the steady state stability limit of each generator unit tends to decrease with the increasing of loading value and the further of load distance from the generator. Keseimbangan daya antara kebutuhan beban dengan pembangkitan generator merupakan salah satu ukuran kestabilan operasi sistem tenaga listrik., Untuk menganalisis kestabilan setiap unit generator dalam sistem multimachine harus dilakukan pada sistem Single Machine to Infinite Bus (SMIB) yang secara aktual dapat mewakili keadaan sistem single machine tersebut dalam sebuah sistem multimachine. Dalam paper ini digunakan suatu metode sederhana untuk menentukan batas kestabilan steady state setiap unit generator pada sistem multimachine Jawa Bali 500 kV menggunakan pendekatan model sistem SMIB dengan memperhatikan perubahan konfigurasi peletakan beban dalam sistem. Untuk memudahkan penentuan batas kestabilan steady state generator yang selalu berubah setiap saat terjadi perubahan peletakan beban, diaplikasikan salah satu model jaring syaraf tiruan yaitu Radial Basis Function Neural Network (RBFNN). Dari hasil simulasi yang dilakukan pada sistem Jawa Bali 500 kV 29 bus 10 generator dapat diketahui bahwa batas kestabilan steady state setiap unit generator cenderung menurun dengan semakin meningkatnya nilai pembebanan dan semakin jauhnya jarak beban dari pembangkit.


Sign in / Sign up

Export Citation Format

Share Document