High performance normal mode helical antennas for RFID tags

Author(s):  
Won gook Hong ◽  
Woong hyun Jung ◽  
Yoshihide Yamada ◽  
Naobumi Michishita
Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3036 ◽  
Author(s):  
Tao Zhong ◽  
Ning Jin ◽  
Wei Yuan ◽  
Chunshan Zhou ◽  
Weibing Gu ◽  
...  

A printable elastic silver ink has been developed, which was made of silver flakes, dispersant, and a fluorine rubber and could be sintered at a low temperature. The printed elastic conductors showed low resistivity at 21 μΩ·cm, which is about 13.2 times of bulk silver (1.59 μΩ·cm). Their mechanical properties were investigated by bending, stretching, and cyclic endurance tests. It was found that upon stretching the resistance of printed conductors increased due to deformation and small cracks appeared in the conductor, but was almost reversible when the strain was removed, and the recovery of conductivity was found to be time dependent. Radio-frequency identification (RFID) tags were fabricated by screen printing the stretchable silver ink on a stretchable fabric (lycra). High performance of tag was maintained even with 1000 cycles of stretching. As a practical example of wearable electronics, an RFID tag was printed directly onto a T-shirt, which demonstrated its normal working order in a wearing state.


2012 ◽  
Vol 1402 ◽  
Author(s):  
Hong Wang ◽  
Zhuoyu Ji ◽  
Liwei Shang ◽  
Yingping Chen ◽  
Congyan Lu ◽  
...  

ABSTRACTIn this paper, low-cost rectifier based on an organic diode for use in organic radio frequency identification (RFID) tags is proposed. Pentacene is the electroactive layer, with 7,7,8,8-tetracyanoquinodimethane (TCNQ) modified low-cost copper (Cu) and aluminum (Al) as the Ohmic and Schottky contacts, respectively. Hole injection barrier between Cu and pentacene can be decreased by forming the self-assembled layers of Cu-TCNQ. The diode shows a high rectification ratio of approximately 2×106 at 5V and the organic diode based rectifier circuit generated a dc output voltage of approximately 2V at 13.56MHz, using an input ac signal with zero-to-peak voltage amplitude of 5 V. The results indicate that chemical modification of the low-cost electrodes could be an efficient way toward low-cost high performance organic electronics devices.


2018 ◽  
Vol 17 (8) ◽  
pp. 1377-1381 ◽  
Author(s):  
Nguyen T. Tuan ◽  
Yoshihide Yamada ◽  
Nguyen Q. Dinh ◽  
Rasyidah H. B. M. Baharin ◽  
Kamilia B. Kamardin ◽  
...  

Author(s):  
Luca Catarinucci ◽  
Riccardo Colella ◽  
Mario De ◽  
Luigi Patrono ◽  
Luciano Tarricone

Sign in / Sign up

Export Citation Format

Share Document