endurance tests
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 63)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 11 (6) ◽  
pp. 7782-7787
Author(s):  
H. A. Al-Baghdadi ◽  
A. Sabah

The use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This paper presents a numerical study that investigates the fire behavior of thermally insulated RC beams flexurally strengthened with NSM-CFRP strips and subjected to fire exposure according to the ISO 834 standard. The numerical study considered three-dimensional finite element models in the ABAQUS software that have been developed to simulate and predict the performance (thermal and structural response) of fire endurance tests on strengthened, uninsulated strengthened, and thermally insulated beams strengthened with NSM-CFRP strips, which were exposed to fire and had different fire insulation schemes. The insulation used was plaster from local material with a thickness range of 25 to 50mm. The variation of the thermal and mechanical properties with the temperature of the constituent materials was considered. All beams' mechanical and thermal responses were adequately simulated using numerical models. The results of the numerical simulations were in good agreement with the experimental data. The fire behavior of the NSM-CFRP strengthened RC beams was examined and particularly the efficiency of the NSM strengthening system during the fire. The behavior in the fire of the NSM-CFRP strengthening system on the RC beams thermally protected with different fire insulation schemes was assessed. Finally, the effectiveness of fire insulation was studied.


Author(s):  
Krzysztof Powała ◽  
Andrzej Obraniak ◽  
Dariusz Heim

Nowadays, the construction sector is changing rapidly towards more energy-efficient solutions. Many companies strive to improve the properties of building materials by reducing the weight of materials, increasing mechanical properties, and improving insulation properties. Therefore, to bring closer the problems that need to be solved, it was proposed to develop a new gypsum composite that will be used in a drywall. In addition, phase change material (PCM) and copolymer were used to improve thermal properties and tighten the final product against paraffin leakage. The main goal of the study was to check the mechanical properties. The results of endurance tests were presented. Based on that, it was determined that PCM affects the strength properties of the gypsum. In analyzing the obtained results, it can be stated from a mechanical point of view that to a certain extent, it was possible to confirm the correctness of using PCM in gypsum with an acrylic copolymer. The other part of the article presents the course of research and the results confirming the presented hypothesis.


Author(s):  
Andri Feldmann ◽  
Remo Lehmann ◽  
Frieder Wittmann ◽  
Peter Wolf ◽  
Jiří Baláš ◽  
...  

AbstractHigh-intensity training (HIT) is known to have deteriorating effects on performance which manifest in various physiological changes such as lowered force production and oxidative capacity. However, the effect of HIT in climbing on finger flexor performance has not been investigated yet. Twenty-one climbers partook in an intervention study with three assessment time points: pre-HIT, post-HIT, and 24-h post-HIT. The HIT involved four five-minute exhaustive climbing tasks. Eight climbers were assigned to a control group. Assessments consisted of three finger flexor tests: maximum voluntary contraction (MVC), sustained contraction (SCT), and intermittent contraction tests (ICT). During the SCT muscle oxygenation (SmO2) metrics were collected via NIRS sensors on the forearm. The HIT had significant deteriorating effects on all force production metrics (MVC − 18%, SCT − 55%, ICT − 59%). Post-24 h showed significant recovery, which was less pronounced for the endurance tests (MVC − 3%, SCT − 16%, ICT − 22%). SmO2 metrics provided similar results for the SCT with medium to large effect sizes. Minimally attainable SmO2 and resting SmO2 both showed moderate negative correlations with pre-HIT force production respectively; r = − 0.41, P = 0.102; r = − 0.361, P = 0.154. A strong association was found between a loss of force production and change in minimally attainable SmO2 (r = − 0.734, P = 0.016). This study presents novel findings on the deteriorating effects of HIT on finger flexor performance and their oxidative capacity. Specifically, the divergent results between strength and endurance tests should be of interest to coaches and athletes when assessing athlete readiness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karol Gryko

AbstractThe aims of this study were (i) to identify the motor potential and basic anthropometric characteristics of Polish basketball players aged 13 to 15 years, (ii) to demonstrate the effect of maturity timing on the results achieved in motor tests and basic body composition parameters, and (iii) to determine which index contributes most to the prediction of performance in the individual tests of speed, jumping ability, agility, and endurance. The sample included 818 male Polish players. Analysis of values related to age-adjusted characteristics showed that in the under 13-year-old group, early maturers had significantly better results (except for stage 1 in the agility test) than average maturers. However, in the endurance test in the under 14- and 15-year-old groups (both distance covered and VO2max), the average maturers obtained higher values. Furthermore, maturity differentiation in the under 14- and 15-year-old groups significantly affected body size, 20-m sprinting time (under 14-year-old group only), and the results of all jumping tests. ANCOVA results (age, body height, and body mass as covariates) showed better results of early maturers in the under 13-year-old group. The opposite trend was observed in the under 14- to 15-year-old groups, where early maturing individuals performed worse in the running vertical jump (VJ) and endurance tests (both distances covered and VO2max). Maturity timing (VJ and VO2max), chronological age (5 m, 10 m, 20 m, agility, and VO2max tests), body height (all tests), body mass (5 m), and the interaction between body mass and height (10 m, 20 m, agility, standing vertical jump, vertical jump) were significant (adjusted R2 = 0.08–0.25; p < 0.001) predictors of motor skills. These findings can be helpful in quantifying and controlling the results of youth sports programs adjusted to biological requirements used in the training process.


2021 ◽  
Author(s):  
Malte Otten ◽  
Deniz Bulutcu ◽  
Ludger Frerichs

Abstract A hydraulic fluid based on water, glycerol and the thickener chitosan was developed in preliminary tests at Technische Universität Braunschweig. In terms of fluid properties, the fluid is comparable to those of conventional fluids. Due to the promising properties of the fluid, further development of the fluid is now being worked on. The focus is on further development for practical use in mobile hydraulic systems, e.g. in agricultural and forestry machinery. The aim here is to optimize various fluid variants for different applications and to define the possible range of uses in general. This paper presents interim results from the development of the fluids and the investigations of the fluids in a wide range of laboratory tests and endurance tests in a hydraulic test bench.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Wahyu Syahrul Ramadhan ◽  
Leonardo Lubis ◽  
Nandina Oktavia ◽  
Daniel Womsiwor ◽  
Beltasar Tarigan

Water is a molecule that plays an essential role in the muscle contraction process because muscle is a tissue that mostly contains water (75-80%). Therefore, athletes need to maintain fluid intake to support their physical activities when competing and when training. Nevertheless, in several studies, it was noted that some athletes experienced hypohydration or dehydration, which ultimately impaired muscle performance. Therefore, this study was conducted to determine the hydration protocol intervention on muscle strength, endurance, and power performance. This research is an analytical study with quasi-experimental research methods, namely single-arm pre-post study design using secondary data. Subjects of this study were 69 athletes year 2020 (named consecutively: Muaythai 9, Pencak silat 12, wrestling 10, judo 18, and taekwondo 20 athletes). This research was conducted from December 2019 to January 2020. In the beginning, all athletes were tested for muscle strength using a leg dynamometer, then muscle endurance tests using push-up and sit-up tests, and muscle power tests using the triple hop test of the right and left legs. After the first test, all athletes were educated about the hydration protocol. The hydration protocol was determined based on each athlete's sweat rate (ISR) and the training characteristics of each sports division. Then, all athletes underwent the training for two months. After that, the same tests were performed. The result showed that hydration protocol influenced the performance of muscle strength, endurance, and power. Therefore, the hydration protocol is influential in maintaining a good hydration status in athletes so that the athlete does not experience hypohydration which will later impair the athlete's muscle performance. Therefore, it is crucial to apply hydration protocols individually according to the training program (volume of training), not only in martial arts sports but in all sports.


2021 ◽  
Author(s):  
Alberto Palacios

When he entered school, covered with a cloud of promises, there was talk of commitment, devotion, and disinterest in the practice of medicine was emphasized. Rites of passage and endurance tests aside, the Hippocratic oath crowned such an effort and foretold a life of affective rewards and prestige.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Joanna Golec ◽  
Kinga Cieślik ◽  
Monika Nowak ◽  
Eżbieta Szczygieł ◽  
Justyna Golec

Background: The objective of the study was to assess the functional status of people who regularly climb for recreational purposes, using the FMS (Functional Movement Screen) and core stability tests (McGill's torso muscular endurance tests). This paper also attempts to determine the relation between the assessment of functional efficiency and the results obtained in core stability tests. Material and methods: The study group were consisted of 30 amateur climbers (aged 26 ±3), who were compared to a control group of 30 people who don’t climb but recreationally practice volleyball (aged 22 ±3). All participants performed each of the seven FMS trials and the three McGill's tests. Results: Amateur climbers, in comparison to non-climbers, were achieved higher scores in each of the core stability trials (p<0,05). Climbers also scored significantly higher results in all FMS trials as well as in the final average (19,0 3 ±1,54 vs. 16,60 ±3,60; p<0,01). In addition, there were found positive correlations between FMS and core stability trials in the group of climbers (Deep Squad vs. Side bridge test; In-Line Lunge vs. Side bridge test; Rotational Stability vs. all trials of the core stability test). Conclusions: People recreational practicing climbing are characterized by a high level of functional efficiency and above-average levels of deep trunk muscles endurance, responsible for the proper functioning of the central stabilization. Relationship between the overall results of the FMS and the core stability tests in the climbers' group shows that proper stability training, which is a part of the climbers training, may result in higher athletes’ performance.


2021 ◽  
Vol 13 (17) ◽  
pp. 9677
Author(s):  
Dong Lin Loo ◽  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Jun Sheng Teh ◽  
Liviu Catalin Andrei ◽  
...  

Two main aspects of the transportation industry are pollution to the environment and depletion of fossil fuels. In the transportation industry, the pollution to the environment can be reduced with the use of cleaner fuel, such as gas-to-liquid fuel, to reduce the exhaust emissions from engines. However, the depletion of fossil fuels is still significant. Biodiesel is a non-toxic, renewable, and biodegradable fuel that is considered an alternative resource to conventional diesel fuel. Even though biodiesel shows advantages as a renewable source, there are still minor drawbacks while operating in diesel engines. Modern vehicle engines are designed to be powered by conventional diesel fuel or gasoline fuel. In this review, the performance, emissions, combustion, and endurance characteristics of different types of diesel engines with various conditions are assessed with biodiesel and blended fuel as well as the effect of biodiesel on the diesel engines. The results show that biodiesel and blended fuel had fewer emissions of CO, HC, and PM but higher NOx emissions than the diesel-fuelled engine. In the endurance test, biodiesel and blended fuel showed less wear and carbon deposits. A high concentration of wear debris was found inside the lubricating oil while the engine operated with biodiesel and blends. The performance, emissions, and combustion characteristics of biodiesel and its blends showed that it can be used in a diesel engine. However, further research on long-term endurance tests is required to obtain a better understanding of endurance characteristics about engine wear of the diesel engine using biodiesel and its blends.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jongmin Park ◽  
Hojeong Ryu ◽  
Sungjun Kim

AbstractIdeal resistive switching in resistive random-access memory (RRAM) should be ensured for synaptic devices in neuromorphic systems. We used an Ag/ZnO/TiN RRAM structure to investigate the effects of nonideal resistive switching, such as an unstable high-resistance state (HRS), negative set (N-set), and temporal disconnection, during the set process and the conductance saturation feature for synaptic applications. The device shows an I–V curve based on the positive set in the bipolar resistive switching mode. In 1000 endurance tests, we investigated the changes in the HRS, which displays large fluctuations compared with the stable low-resistance state, and the negative effect on the performance of the device resulting from such an instability. The impact of the N-set, which originates from the negative voltage on the top electrode, was studied through the process of intentional N-set through the repetition of 10 ON/OFF cycles. The Ag/ZnO/TiN device showed saturation characteristics in conductance modulation according to the magnitude of the applied pulse. Therefore, potentiation or depression was performed via consecutive pulses with diverse amplitudes. We also studied the spontaneous conductance decay in the saturation feature required to emulate short-term plasticity.


Sign in / Sign up

Export Citation Format

Share Document