A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

Author(s):  
Meilin Liu ◽  
H. Bagci
1981 ◽  
Vol 103 (4) ◽  
pp. 657-664 ◽  
Author(s):  
H. U. Akay ◽  
A. Ecer

Analysis of transonic flow through a cascade of airfoils is investigated using the finite element method. Development of a computational grid suitable for complex flow structures and different types of boundary conditions is presented. An efficient pseudo-time integration scheme is developed for the solution of equations. Modeling of the shock and the convergence characteristics of the developed scheme are discussed. Numerical results include a 45 deg staggered cascade of NACA 0012 airfoils with inlet flow Mach number of 0.8 and angles of attack 1, 0, and −1 deg.


Geophysics ◽  
2020 ◽  
pp. 1-70
Author(s):  
Edith Sotelo Gamboa ◽  
Marco Favino ◽  
Richard L. Gibson, Jr.

The Generalized Finite Element Method (GFEM) has been applied frequently to solve harmonic wave equations, but its use in the simulation of transient wave propagation is still limited. We apply GFEM to the simulation of the acoustic wave equation in models relevant to exploration seismology. We also perform an assessment of its accuracy and efficiency. The main advantage of GFEM is that it provides an enhanced solution accuracy in comparison to the Standard Finite Element Method (FEM). This is attained by adding user-defined enrichment functions to standard FEM approximations. For the acoustic wave equation,we consider plane waves oriented in different directions as the enrichments, whose argument include the largest wavenumber of the wavefield. We combine GFEM with an unconditionally stable time integration scheme with constant time step. To assess the accuracy and efficiency of GFEM, we present a comparison of GFEM simulation results against those obtained with the Spectral Element Method (SEM). We use SEM because it is the method of choice for wave propagation simulation due to its proven accuracy and efficiency. In the numerical examples, we perform first a convergence study in space and time,evaluating the accuracy of both methods against a semi-analytical solution. Then, we consider two simulations of relevant models in exploration seismology that include low-velocity features, an inclusion with a complex geometrical boundary and topography. Results using these models show that the GFEM presents a comparable accuracy and efficiency to the ones based on SEM. For the given examples, GFEM efficiency stems from the combined effect of local mesh refinement, non-conforming or unstructured, and the unconditionally stable time integration scheme with constant time step. Moreover, these features providegreat flexibility to the GFEM implementations, proving to be advantageous when using, for example, unstructured grids that impose severe time step size restrictions in SEM.


Sign in / Sign up

Export Citation Format

Share Document