Prediction of inertial navigation system error dynamics in INS/GPS system

Author(s):  
N. K. Filyashkin ◽  
V. S. Yatskivsky
2020 ◽  
Vol 12 (21) ◽  
pp. 3639
Author(s):  
Michal Labowski ◽  
Piotr Kaniewski

Navigation systems used for the motion correction (MOCO) of radar terrain images have several limitations, including the maximum duration of the measurement session, the time duration of the synthetic aperture, and only focusing on minimizing long-term positioning errors of the radar host. To overcome these limitations, a novel, multi-instance inertial navigation system (MINS) has been proposed by the authors. In this approach, the classic inertial navigation system (INS), which works from the beginning to the end of the measurement session, was replaced by short INS instances. The initialization of each INS instance is performed using an INS/GPS system and is triggered by exceeding the positioning error of the currently operating instance. According to this procedure, both INS instances operate simultaneously. The parallel work of the instances is performed until the image line can be calculated using navigation data originating only from the new instance. The described mechanism aims to perform instance switching in a manner that does not disturb the initial phases of echo signals processed in a single aperture. The obtained results indicate that the proposed method improves the imaging quality compared to the methods using the classic INS or the INS/GPS system.


2013 ◽  
Vol 760-762 ◽  
pp. 2162-2166
Author(s):  
Pei Yu ◽  
Gong Liu Yang

The inertial navigation system error caused by sea current and log error greatly oscillates. In order to evaluate the effectiveness of damping attitude, the vehicles movement should be detected in real-time. For this reason, a novel adaptive level damped algorithm was presented in this paper. According to the characteristics of the movement of the ship, this algorithm has determined when to turn into the damp loop according to the change of acceleration. Theoretical analysis and Simulations results show that the adaptive level damped algorithm could damp most of the Schuler and Foucault oscillations period, and efficiently improve the precision of the PINS on ships.


Sign in / Sign up

Export Citation Format

Share Document