Velocity error representations in inertial navigation system error models

Author(s):  
Robert Rogers
2012 ◽  
Vol 546-547 ◽  
pp. 1360-1365
Author(s):  
Xing Xing Dai ◽  
Ling Xie ◽  
Yu Liang Mao ◽  
Chun Lei Song

Zero Velocity Update (ZUPT) is an essential method of error control in Stapdown Inertial Navigation System (SINS), which is extensively used because of its cheapness and efficiency. ZUPT uses the output of velocity error of SINS when the carrier is parking, to update the errors of other items in SINS. This method can improve the position and direction precisions of SINS. Kalman filter is chosen as the method of ZUPT to correct the velocity and position errors in SINS in this article. The method of ZUPT based on Kalman filter is applied to the vehicle experiment. The results of the vehicle experiment indicate that the ZUPT based on Kalman filter is efficient and powerful in error control, and the Kalman filter designed based on SINS is proper.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2921 ◽  
Author(s):  
Jie Sui ◽  
Lei Wang ◽  
Tao Huang ◽  
Qi Zhou

The gyroscope, accelerometer and angular encoder are the most important components in a dual-axis rotation inertial navigation system (RINS). However, there are asynchronies among the sensors, which will thus lead to navigation errors. The impact of asynchrony between the gyroscope and angular encoder on the azimuth error and the impact of asynchrony between the gyroscope and accelerometer on the velocity error are analyzed in this paper. A self-calibration method based on navigation errors is proposed based on the analysis above. Experiments show that azimuth and velocity accuracy can be improved by compensating the asynchronies.


2013 ◽  
Vol 760-762 ◽  
pp. 2162-2166
Author(s):  
Pei Yu ◽  
Gong Liu Yang

The inertial navigation system error caused by sea current and log error greatly oscillates. In order to evaluate the effectiveness of damping attitude, the vehicles movement should be detected in real-time. For this reason, a novel adaptive level damped algorithm was presented in this paper. According to the characteristics of the movement of the ship, this algorithm has determined when to turn into the damp loop according to the change of acceleration. Theoretical analysis and Simulations results show that the adaptive level damped algorithm could damp most of the Schuler and Foucault oscillations period, and efficiently improve the precision of the PINS on ships.


Sign in / Sign up

Export Citation Format

Share Document