New Approximation to Design Fractional Order Digital Differentiator Using Fractional Delay Filters

Author(s):  
D. Upadhyay ◽  
R.K. Singh
2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Baojun Miao ◽  
Xuechen Li

By using fractional calculus and the summation by parts formula in this paper, the asymptotic behaviours of solutions of nonlinear neutral fractional delay pantograph equations with continuous arguments are investigated. The asymptotic estimates of solutions for the equation are obtained, which may imply asymptotic stability of solutions. In the end, a particular case is provided to illustrate the main result and the speed of the convergence of the obtained solutions.


Author(s):  
YangQuan Chen ◽  
Rongtao Sun ◽  
Anhong Zhou

This paper presents a brief overview of some existing fractional order signal processing (FOSP) techniques where the developments in the mathematical communities are introduced; relationship between the fractional operator and long-range dependence is demonstrated, and fundamental properties of each technique and some of its applications are summarized. Specifically, we presented a tutorial on 1) fractional order linear systems; 2) autoregressive fractional integrated moving average (ARFIMA); 3) 1/fαnoise; 4) Hurst parameter estimation; 5) fractional order Fourier transformation (FrFT); 6) fractional order linear transforms (Hartley, Sine, Cosine); 7) fractal; 8) fractional order splines; 9) fractional lower order moments (FLOM) and 10) fractional delay filter. Whenever possible, we indicate the connections between these FOSP techniques.


2018 ◽  
Vol 36 (4) ◽  
pp. 55-75 ◽  
Author(s):  
Kishor D. Kucche ◽  
Sagar T. Sutar

We establish existence and uniqueness results for fractional order delay differential equations. It is proved that successive approximation method can also be successfully applied to study Ulam--Hyers stability, generalized Ulam--Hyers stability, Ulam--Hyers--Rassias stability, generalized Ulam--Hyers--Rassias stability, $ \mathbb{E}_{\alpha}$--Ulam--Hyers stability and generalized $ \mathbb{E}_{\alpha}$--Ulam--Hyers stability of fractional order delay differential equations.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850129 ◽  
Author(s):  
Shibendu Mahata ◽  
Suman Kumar Saha ◽  
Rajib Kar ◽  
Durbadal Mandal

This paper presents an efficient approach to design wideband, accurate, stable, and minimum-phase fractional-order digital differentiators (FODDs) in terms of the infinite impulse response (IIR) filters using an evolutionary optimization technique called flower pollination algorithm (FPA). The efficiency comparisons of FPA with real-coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE)-based designs are conducted with respect to different magnitude and phase response error metrics, parametric and nonparametric statistical hypotheses tests, computational time, and fitness convergence. Exhaustive simulation results clearly demonstrate that FPA significantly outperforms RGA, PSO, and DE in attaining the best solution quality consistently. Extensive analysis is also conducted in order to determine the role of control parameters of FPA on the performance of the designed FODDs. The proposed FPA-based FODDs outperform all the designs published in the recent literature with respect to the magnitude responses and also achieve a competitive performance in terms of the phase response.


Sign in / Sign up

Export Citation Format

Share Document