Volume 5: 6th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C
Latest Publications


TOTAL DOCUMENTS

221
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

Published By ASMEDC

079184806x

Author(s):  
Yan Liu ◽  
Dirk So¨ffker

This paper introduces a robust nonlinear control method combining classical feedback linearization and a high-gain PI-Observer (Proportional-Integral Observer) approach that can be applied to control a nonlinear single-input system with uncertainties or unknown effects. It is known that the lack of robustness of the feedback linearization approach limits its practical applications. The presented approach improves the robustness properties and extends the application area of the feedback linearization control. The approach is developed analytically and fully illustrated. An example which uses input-state linearization and PI-Observer design is given to illustrate the idea and to demonstrate the advantages.


Author(s):  
Dong Hwan Choi ◽  
Se Jeong Lee ◽  
Jonathan A. Wickert ◽  
Hong Hee Yoo

The operating positional error of a robot manipulator, which develops inevitably because of manufacturing tolerances and assembly clearances, is preferentially maintained within a certain range in order to achieve an acceptable level of performance and accuracy. Because additional cost is incurred when manufacturing tolerances are tightened, an alternative design strategy maximizes the tolerances (so as to reduce the cost) while minimizing positioning error (to satisfy a performance requirement). In this paper, a new joint clearance model is developed for spatial mechanisms that incorporate revolute joints, which in turn are subjected to specified tolerance or uncertainty in the orientation of their axes. Statistical design parameters related to variations of link length and joint axis orientation are identified from the clearance model. The statistical influence of the design parameters on the robot manipulator’s response is investigated through a general multibody dynamics sensitivity formulation. The method offers substantial improvement in computational efficiency when compared to the Monte Carlo procedure. The uncertainty in orientation of a revolute joint’s axis influences the positioning accuracy of the robot manipulator’s response to a greater degree than does uncertainty in the length of a link.


Author(s):  
S. Kalender ◽  
H. Flashner

An approach for robust control of periodically time-varying systems is proposed. The approach combines the point-mapping formulation and a parameterization of the control vector to formulate an equivalent time-invariant discrete-time representation of the system. The discrete-time representation of the dynamic system allows for the application of known sampled-data control design methodologies. A perturbed, discrete-time dynamic model is formulated and plant parametric uncertainty are obtained using a truncated point-mapping algorithm. The error bounds due to point-mapping approximation are computed and a robustness analysis problem of the system due to parametric uncertainties is formulated using structured singular value theory. The proposed approach is illustrated by two design examples. Simulation studies show good performance robustness of the control system to parameter perturbations and system nonlinearities.


Author(s):  
Shilpa A. Vaze ◽  
Prakash Krishnaswami ◽  
James DeVault

Most state-of-the-art multibody systems are multidisciplinary and encompass a wide range of components from various domains such as electrical, mechanical, hydraulic, pneumatic, etc. The design considerations and design parameters of the system can come from any of these domains or from a combination of these domains. In order to perform analytical design sensitivity analysis on a multidisciplinary system (MDS), we first need a uniform modeling approach for this class of systems to obtain a unified mathematical model of the system. Based on this model, we can derive a unified formulation for design sensitivity analysis. In this paper, we present a modeling and design sensitivity formulation for MDS that has been successfully implemented in the MIXEDMODELS (Multidisciplinary Integrated eXtensible Engine for Driving Metamodeling, Optimization and DEsign of Large-scale Systems) platform. MIXEDMODELS is a unified analysis and design tool for MDS that is based on a procedural, symbolic-numeric architecture. This architecture allows any engineer to add components in his/her domain of expertise to the platform in a modular fashion. The symbolic engine in the MIXEDMODELS platform synthesizes the system governing equations as a unified set of non-linear differential-algebraic equations (DAE’s). These equations can then be differentiated with respect to design to obtain an additional set of DAE’s in the sensitivity coefficients of the system state variables with respect to the system’s design variables. This combined set of DAE’s can be solved numerically to obtain the solution for the state variables and state sensitivity coefficients of the system. Finally, knowing the system performance functions, we can calculate the design sensitivity coefficients of these performance functions by using the values of the state variables and state sensitivity coefficients obtained from the DAE’s. In this work we use the direct differentiation approach for sensitivity analysis, as opposed to the adjoint variable approach, for ease in error control and software implementation. The capabilities and performance of the proposed design sensitivity analysis formulation are demonstrated through a numerical example consisting of an AC rectified DC power supply driving a slider crank mechanism. In this case, the performance functions and design variables come from both electrical and mechanical domains. The results obtained were verified by perturbation analysis, and the method was shown to be very accurate and computationally viable.


Author(s):  
Sue Ann Campbell ◽  
Stephanie Crawford ◽  
Kirsten Morris

We consider an experimental system consisting of a pendulum, which is free to rotate 360 degrees, attached to a cart which can move in one dimension. There is stick slip friction between the cart and the track on which it moves. Using two different models for this friction we design feedback controllers to stabilize the pendulum in the upright position. We show that controllers based on either friction model give better performance than one based on a simple viscous friction model. We then study the effect of time delay in this controller, by calculating the critical time delay where the system loses stability and comparing the calculated value with experimental data. Both models lead to controllers with similar robustness with respect to delay. Using numerical simulations, we show that the effective critical time delay of the experiment is much less than the calculated theoretical value because the basin of attraction of the stable equilibrium point is very small.


Author(s):  
Qiang Zhao ◽  
Hong Tao Wu

This paper describes two aspects of multibody system (MBS) dynamics on a generalized mass metric in Riemannian velocity space and recursive momentum formulation. Firstly, we present a detailed expression of the Riemannian metric and operator factorization of a generalized mass tensor for the dynamics of general-topology rigid MBS. The derived expression allows a clearly understanding the components of the generalized mass tensor, which also constitute a metric of the Riemannian velocity space. It is being the fact that there does exist a common metric in Lagrange and recursive Newton-Euler dynamic equation, we can determine, from the Riemannian geometric point of view, that there is the equivalent relationship between the two approaches to a given MBS. Next, from the generalized momentum definition in the derivation of the Riemannian velocity metrics, recursive momentum equations of MBS dynamics are developed for progressively more complex systems: serial chains, topological trees, and closed-loop systems. Through the principle of impulse and momentum, a new method is proposed for reorienting and locating the MBS form a given initial orientation and location to desired final ones without needing to solve the motion equations.


Author(s):  
Dumitru Baleanu ◽  
Sami I. Muslih ◽  
Eqab M. Rabei

The fractional Lagrangian and Hamiltonian dynamics is an important issue in fractional calculus area. The classical dynamics can be reformulated in terms of fractional derivatives. The fractional variational principles produce fractional Euler-Lagrange equations and fractional Hamiltonian equations. The fractional dynamics strongly depends of the fractional integration by parts as well as the non-locality of the fractional derivatives. In this paper we present the fractional Hamilton formulation based on Caputo fractional derivatives. One example is treated in details to show the characteristics of the fractional dynamics.


Author(s):  
Jin-Kyu Ok ◽  
Jeong-Hyun Sohn ◽  
Wan-Suk Yoo

In this paper, a coupled bushing model for vehicle dynamics analysis based on the Bouc-Wen hysteretic model is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear and behavior of the typical rubber bushing elements using MTS machine. Test results are used to define the parameters of the Bouc-Wen bushing model. The Bouc-Wen model is employed to represent the hysteretic characteristics of the bushing. A coupled relation for radial mode and torsional mode are suggested. Model parameters are obtained by using the genetic algorithm, and sensitivity indices of parameters are also extracted from the sensitivity analyses. ADAMS program is used for the identification process and VisualDOC program is employed to find the optimal parameters of the proposed model. A half-car simulation is carried out to validate the proposed bushing model.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

The main goal of this work is to develop a methodology for studying and quantifying the wear phenomenon in revolute clearance joints. In the process, a simple model for a revolute joint in the framework of multibody systems formulation is presented. The evaluation of the contact forces developed is based on a continuous contact force model that accounts for the geometrical and materials properties of the colliding bodies. The friction effects due to the contact in the joints are also represented. Then, these contact-impact forces are used to compute the pressure field at the contact zone, which ultimately is employed to quantify the wear developed and caused by the relative sliding motion. In this work, the Archard’s wear model is used. A simple planar multibody mechanical system is used to perform numerical simulations, in order to discuss the assumptions and procedures adopted throughout this work. Different results are presented and discussed throughout this research work. From the main results obtained, it can be drawn that the wear phenomenon is not uniformly distributed around the joint surface, owing to the fact that the contact between the joint elements is wider and more frequent is some specific regions.


Author(s):  
Zheng-Dong Ma ◽  
Dongying Jiang ◽  
Yuanyuan Liu

A three-dimensional nonlinear thread formulation developed by the first two authors [1] has been extended in this paper for modeling and simulation of woven fabrics and fiber-reinforced composites of various configurations under arbitrary large deformation. The resultant model accounts for extensibility of the woven fibers in the composite, geometry nonlinearity, tension variation along the fiber, and other nonlinear effects due to the woven composition and large deformation. The new modeling effort includes the development of a contact model for simulating the contact between fibers, which can be used to predict high-fidelity behavior of woven fibers in the composite and their interactions. Matrix model is also added into the composite for studying the coupling between woven fibers and matrix material such as resin. The incremental form of original nonlinear equation is discretized using a finite element method with an iteration scheme. Two numerical examples are given to demonstrate the effectiveness of the proposed modeling technique.


Sign in / Sign up

Export Citation Format

Share Document