Research on modeling and simulation of semi-autonomous orbit determination for satellite navigation constellation

Author(s):  
Jun Zhu ◽  
Yuanlan Wen ◽  
Zhonggui Chen ◽  
Ying Liao ◽  
Wanghua Pan
2014 ◽  
Vol 67 (5) ◽  
pp. 737-752 ◽  
Author(s):  
Lei Zhang ◽  
Bo Xu

In view of the shortcomings of existing satellite navigation systems in deep-space performance, candidate architectures which utilise libration point orbits in the Earth-Moon system are proposed to create an autonomous satellite navigation system for lunar missions. Three candidate constellations are systematically studied in order to achieve continuous global coverage for lunar orbits: the Earth-Moon L1,2 two-satellite constellation, the Earth-Moon L2,4,5 three-satellite constellation and the Earth-Moon L1,2,4,5 four-satellite constellation. After a thorough search for possible configurations, the latter two constellations are found to be the simplest feasible architectures for lunar navigation. Finally, an autonomous orbit determination simulation is performed to verify the autonomy of the system and two optimal configurations are obtained in a comprehensive consideration of coverage and autonomous orbit determination performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Youtao Gao ◽  
Junkang Chen ◽  
Bo Xu ◽  
Jianhua Zhou

The accuracy of autonomous orbit determination of Lagrangian navigation constellation will affect the navigation accuracy for the deep space probes. Because of the special dynamical characteristics of Lagrangian navigation satellite, the error caused by different estimation algorithm will cause totally different autonomous orbit determination accuracy. We apply the extended Kalman filter and the fading–memory filter to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The accuracy of autonomous orbit determination using fading-memory filter can improve 50% compared to the autonomous orbit determination accuracy using extended Kalman filter. We proposed an integrated Kalman fading filter to smooth the process of autonomous orbit determination and improve the accuracy of autonomous orbit determination. The square root extended Kalman filter is introduced to deal with the case of inaccurate initial error variance matrix. The simulations proved that the estimation method can affect the accuracy of autonomous orbit determination greatly.


Sign in / Sign up

Export Citation Format

Share Document