Efficient DNA algorithm for constructing Ramsey graph based on minimal degree vertex

Author(s):  
Fang Xi ◽  
Xiaoli Qiang ◽  
Dongming Zhao
Keyword(s):  
2002 ◽  
Vol 25 (3) ◽  
pp. 336-337 ◽  
Author(s):  
Zoltan Dienes ◽  
Josef Perner

We consider Perruchet & Vinter's (P&V's) central claim that all mental representations are conscious. P&V require some way of fixing their meaning of representation to avoid the claim becoming either obviously false or unfalsifiable. We use the framework of Dienes and Perner (1999) to provide a well-specified possible version of the claim, in which all representations of a minimal degree of explicitness are postulated to be conscious.


2020 ◽  
Vol 26 (3-4) ◽  
pp. 268-286
Author(s):  
YONG CHENG

AbstractIn this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.


2021 ◽  
pp. 1-11
Author(s):  
Zhaocai Wang ◽  
Dangwei Wang ◽  
Xiaoguang Bao ◽  
Tunhua Wu

The vertex coloring problem is a well-known combinatorial problem that requires each vertex to be assigned a corresponding color so that the colors on adjacent vertices are different, and the total number of colors used is minimized. It is a famous NP-hard problem in graph theory. As of now, there is no effective algorithm to solve it. As a kind of intelligent computing algorithm, DNA computing has the advantages of high parallelism and high storage density, so it is widely used in solving classical combinatorial optimization problems. In this paper, we propose a new DNA algorithm that uses DNA molecular operations to solve the vertex coloring problem. For a simple n-vertex graph and k different kinds of color, we appropriately use DNA strands to indicate edges and vertices. Through basic biochemical reaction operations, the solution to the problem is obtained in the O (kn2) time complexity. Our proposed DNA algorithm is a new attempt and application for solving Nondeterministic Polynomial (NP) problem, and it provides clear evidence for the ability of DNA calculations to perform such difficult computational problems in the future.


2000 ◽  
Vol 11 (04) ◽  
pp. 553-578 ◽  
Author(s):  
MARGARIDA MENDES LOPES ◽  
RITA PARDINI
Keyword(s):  

2006 ◽  
Vol 207 (3) ◽  
pp. 631-673 ◽  
Author(s):  
Luís R.A. Finotti

Sign in / Sign up

Export Citation Format

Share Document