Analysis of Preprocessing Techniques, Keras Tuner, and Transfer Learning on Cloud Street image data

Author(s):  
Sharmad Joshi ◽  
Jessie Ann Owens ◽  
Shlok Shah ◽  
Thilanka Munasinghe
Keyword(s):  
2021 ◽  
Vol 29 (1) ◽  
pp. 19-36
Author(s):  
Çağín Polat ◽  
Onur Karaman ◽  
Ceren Karaman ◽  
Güney Korkmaz ◽  
Mehmet Can Balcı ◽  
...  

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.


Author(s):  
Aditya Rajbongshi ◽  
Thaharim Khan ◽  
Md. Mahbubur Rahman ◽  
Anik Pramanik ◽  
Shah Md Tanvir Siddiquee ◽  
...  

<p>The acknowledgment of plant diseases assumes an indispensable part in taking infectious prevention measures to improve the quality and amount of harvest yield. Mechanization of plant diseases is a lot advantageous as it decreases the checking work in an enormous cultivated area where mango is planted to a huge extend. Leaves being the food hotspot for plants, the early and precise recognition of leaf diseases is significant. This work focused on grouping and distinguishing the diseases of mango leaves through the process of CNN. DenseNet201, InceptionResNetV2, InceptionV3, ResNet50, ResNet152V2, and Xception all these models of CNN with transfer learning techniques are used here for getting better accuracy from the targeted data set. Image acquisition, image segmentation, and features extraction are the steps involved in disease detection. Different kinds of leaf diseases which are considered as the class for this work such as anthracnose, gall machi, powdery mildew, red rust are used in the dataset consisting of 1500 images of diseased and also healthy mango leaves image data another class is also added in the dataset. We have also evaluated the overall performance matrices and found that the DenseNet201 outperforms by obtaining the highest accuracy as 98.00% than other models.</p>


2021 ◽  
Vol 14 (1) ◽  
pp. 103
Author(s):  
Dongchuan Yan ◽  
Hao Zhang ◽  
Guoqing Li ◽  
Xiangqiang Li ◽  
Hua Lei ◽  
...  

The breaching of tailings pond dams may lead to casualties and environmental pollution; therefore, timely and accurate monitoring is an essential aspect of managing such structures and preventing accidents. Remote sensing technology is suitable for the regular extraction and monitoring of tailings pond information. However, traditional remote sensing is inefficient and unsuitable for the frequent extraction of large volumes of highly precise information. Object detection, based on deep learning, provides a solution to this problem. Most remote sensing imagery applications for tailings pond object detection using deep learning are based on computer vision, utilizing the true-color triple-band data of high spatial resolution imagery for information extraction. The advantage of remote sensing image data is their greater number of spectral bands (more than three), providing more abundant spectral information. There is a lack of research on fully harnessing multispectral band information to improve the detection precision of tailings ponds. Accordingly, using a sample dataset of tailings pond satellite images from the Gaofen-1 high-resolution Earth observation satellite, we improved the Faster R-CNN deep learning object detection model by increasing the inputs from three true-color bands to four multispectral bands. Moreover, we used the attention mechanism to recalibrate the input contributions. Subsequently, we used a step-by-step transfer learning method to improve and gradually train our model. The improved model could fully utilize the near-infrared (NIR) band information of the images to improve the precision of tailings pond detection. Compared with that of the three true-color band input models, the tailings pond detection average precision (AP) and recall notably improved in our model, with the AP increasing from 82.3% to 85.9% and recall increasing from 65.4% to 71.9%. This research could serve as a reference for using multispectral band information from remote sensing images in the construction and application of deep learning models.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9 ◽  
Author(s):  
Weibin Chen ◽  
Zhiyang Gu ◽  
Zhimin Liu ◽  
Yaoyao Fu ◽  
Zhipeng Ye ◽  
...  

Thyroid nodule is a clinical disorder with a high incidence rate, with large number of cases being detected every year globally. Early analysis of a benign or malignant thyroid nodule using ultrasound imaging is of great importance in the diagnosis of thyroid cancer. Although the b-mode ultrasound can be used to find the presence of a nodule in the thyroid, there is no existing method for an accurate and automatic diagnosis of the ultrasound image. In this pursuit, the present study envisaged the development of an ultrasound diagnosis method for the accurate and efficient identification of thyroid nodules, based on transfer learning and deep convolutional neural network. Initially, the Total Variation- (TV-) based self-adaptive image restoration method was adopted to preprocess the thyroid ultrasound image and remove the boarder and marks. With data augmentation as a training set, transfer learning with the trained GoogLeNet convolutional neural network was performed to extract image features. Finally, joint training and secondary transfer learning were performed to improve the classification accuracy, based on the thyroid images from open source data sets and the thyroid images collected from local hospitals. The GoogLeNet model was established for the experiments on thyroid ultrasound image data sets. Compared with the network established with LeNet5, VGG16, GoogLeNet, and GoogLeNet (Improved), the results showed that using GoogLeNet (Improved) model enhanced the accuracy for the nodule classification. The joint training of different data sets and the secondary transfer learning further improved its accuracy. The results of experiments on the medical image data sets of various types of diseased and normal thyroids showed that the accuracy rate of classification and diagnosis of this method was 96.04%, with a significant clinical application value.


Author(s):  
Telmo Amaral ◽  
Luís M. Silva ◽  
Luís A. Alexandre ◽  
Chetak Kandaswamy ◽  
Joaquim Marques de Sá ◽  
...  

2019 ◽  
Vol 15 ◽  
pp. P1238-P1238
Author(s):  
Xiaonan Liu ◽  
Jing Li ◽  
Kewei Chen ◽  
Teresa Wu ◽  
Fleming Lure ◽  
...  

Author(s):  
Ting Yin ◽  
Sushil Kumar Plassar ◽  
Julio C. Ramirez ◽  
Vipul KaranjKar ◽  
Joseph G. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document